首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental results for fully developed turbulent plane Couette flow are reported and compared to earlier experimental and numerical results. In addition some turbulent statistics not previously reported are shown.  相似文献   

2.
The present study aims to investigate the features of a grid-generated turbulence occurring in a current flow with a free surface flow. The interest is focused on the length and time scales of the turbulence. These are the macro, the micro and the Kolmogorov scales. To analyze the flow, a 2D LDV system has been used to measure , , u′ and w′. This non-intrusive and optical technique is really accurate (in terms of space and time resolution). Furthermore, it does not disturb the flow and provides a high data rate. Both horizontal and vertical velocities are recorded at the same time according to a coincidence window (τcw). Bias measurements are avoided by using a filtering technique during data processing. The improved homogeneity and isotropy of the turbulence downstream of the grid allows the use of the Taylor hypothesis. Thus, all length and time scales of the flow can be estimated. Results are discussed as well as the influence of the upcoming mean velocity on the turbulence properties.  相似文献   

3.
A review of the globally subcritical transition to turbulence in shear flows is presented, with an emphasis on the cases of plane and circular Couette flows (pCf and cCf, respectively). A Swift–Hohenberg-like model is next proposed to interpret the behavior of plane Couette flow in the vicinity of its global stability threshold. We present results of numerical simulations supporting this proposal and helping us to raise good questions about the growth and decay of intermittent turbulent domains in this precise context, and more generally about the coexistence of laminar flow and turbulence in other spatio-temporally intermittent flows. PACS 47.27.-i, 47.54.-r, 05.45.-a  相似文献   

4.
The variation of main turbulent quantities in an isotropic turbulent flow, such as the decay of turbulent energy and the variation of Taylor microscale of turbulence with time are obtained, by employing a hot-wire anemometer and a nearly isotropic turbulent flow which is produced by a gridscreen located at the entrance of the test section in a low-level turbulence and low-speed wind tunnel in Peking University. The experimental results of the decay of turbulent energy and the variation of Taylor microscale of turbulence with time at the whole period from initial to final stage, normalized in an non-dimensional form, are consistent quite well with the computational results by the theory of the statistical vorticity structure[1]. The experimental results presented in this paper also agree with Townsend's results obtained in earlier years[2] as well as with Bennett's in the seventy's[3].  相似文献   

5.
刘雪岭  张奇 《爆炸与冲击》2019,39(3):032101-1-032101-10

以正戊烷云雾为研究对象,进行预点火湍流对云雾爆炸参数影响规律的实验研究。首先通过不同气动压力进行喷雾,获得平均特征直径(SMD)分别为 21.21、14.51 和 8.64 μm 的正戊烷云雾,并得到不同气动压力预点火的湍流均方根速度;随后在 20 L 云雾爆炸参数测量系统中实验获得预点火湍流对正戊烷云雾蒸发速率、爆炸超压峰值、压力上升速率和火焰传播延迟时间的影响。结果表明:(1) 对于圆柱形罐体对称式双喷头分散系统,流场环境可近似认定为零平均速率湍流场;在0.4、0.6和0.8 MPa的气动压力喷雾50 ms的分散作用下,在100~250 ms内,湍流均方根速度在1.0~6.2 m/s范围内,平均湍流积分尺度在40~72 mm范围内,湍流最大湍流尺度的雷诺数在8 000~15 000范围内,柯尔莫哥洛夫微尺度在0.03~0.1 mm范围内;(2) 对于较小的液滴群,随湍流强度的增加,液滴群的蒸发速率有更为明显的提升;(3) 对比云雾三种SMD,粒径8.64 μm的超压峰值与最大压力上升速率随湍流强度增长趋势更显著,并发生爆炸强度显著提升现象,即存在“转变区域”(transition range)现象;(4) 对于SMD在8~22 μm范围内,湍流均方根速度处于1.0~4.0 m/s时为火焰传播延迟时间的低增长阶段,湍流均方根速度处于4.0~6.2 m/s时为火焰传播延迟时间的高增长阶段,湍流强度与火焰传播延迟时间在相应的两个湍流强度阶段范围内呈线性增长。

  相似文献   

6.
Numerical simulation on compressible turbulence by spectral method   总被引:1,自引:0,他引:1  
The numerical and physical issues of simulations on compressible turbulence are reviewed in the present paper. An outline of the global spectral methods and the progress of recent local spectral methods are illustrated. Several typical subjects in this field are studied, including homogeneous isotropic turbulence, autoignition in premixed turbulence, interaction between flames and turbulence, and shock wave in turbulence. The results of the numerical simulations are discussed, enabling us to discover and to understand the physical phenomena which have not been solved by experiments.  相似文献   

7.
Measurements of mean velocity components, turbulent intensity, and Reynolds shear stress are presented in a turbulent lifted H2/N2 jet flame as well as non-reacting air jet issuing into a vitiated co-flow by laser doppler velocimetry (LDV) technique. The objectives of this paper are to obtain a velocity data base missing in the previous experiment data of the Dibble burner and so provide initial and flow field data for evaluating the validity of various numerical codes describing the turbulent partially premixed flames on this burner. It is found that the potential core is shortened due to the high ratio of jet density to co-flow density in the non-reacting cases. However, the existence of flame suppressed turbulence in the upstream region of the jet dominates the length of potential core in the reacting cases. At the centreline, the normalized axial velocities in the reacting cases are higher than the non-reacting cases, and the relative turbulent intensities of the reacting flow are smaller than in the non-reacting flow, where a self-preserving behaviour for the relative turbulent intensities exists at the downstream region. The profiles of mean axial velocity in the lifted flame distribute between the non-reacting jet and non-premixed flame both in the axial and radial distributions. The radial distributions of turbulent kinetic energy in the lifted flames exhibit a change in distributions indicating the difference of stabilisation mechanisms of the two lifted flame. The experimental results presented will guide the development of an improved modelling for such flames.  相似文献   

8.
李艳超  梁博  江雨婷 《爆炸与冲击》2023,43(11):115402-1-115402-7

为预先评估外加湍流工况下天然气的爆炸超压峰值,通过揭示外加湍流对天然气爆炸火焰形态、火焰前锋速度和爆炸超压的影响规律,建立了耦合外加湍流的天然气爆炸超压峰值预测模型。结果表明:外加湍流可使火焰加速传播,且随着外加湍流强度的增加,火焰前锋速度逐渐增加;随着外加湍流强度的增加,爆炸超压峰值和最大升压速率逐渐增加;随着压力监测点和点火位置间距的增加,爆炸超压峰值和最大升压速率整体呈减小的变化趋势。外加湍流工况下天然气的爆炸超压预测必须考虑火焰的加速特征,实验测得爆炸超压峰值介于层流火焰模型和湍流火焰模型计算的爆炸超压峰值之间。

  相似文献   

9.
The effect of the turbulence intensity of the oncoming stream on the aerodynamic characteristics of the NACA-0012 airfoil is investigated by a direct numerical simulation. The numerical results are found to be consistent with the experimental measurements. Based on the finite spectral QUICK scheme, the simulation gets the high accuracy results. Both the simulation and the experiment reveal that the airfoil stall does not exist for the low turbulence intensity, however, occurs when the turbulence intensity increases sufficiently. Besides, the turbulence intensity has a significant effect on both the airfoil boundary layer and the separated shear layer.  相似文献   

10.
11.
A numerical simulation is presented for a thermal plasma reactor with particle-trajectory model in this paper.Turbulance is considered by using simple SGS model.Thegoverning equations are solved by means of the algorithm of SIMPLER.The calculatedresults give the velocity and the temperature fields within plasma reactor,and thetrajectories of the injected particles.  相似文献   

12.
An experimental study has been carried out to investigate the interaction between propagating turbulent premixed flames and solid obstacles. The experimental rig was configured specifically to allow detailed measurements with laser-based optical diagnostics. A wall-type solid obstacle was mounted inside a laboratory-scale combustion chamber with rectangular cross-section. The flame was initiated, by igniting a combustible mixture of methane in air at the center of the closed end of the combustion chamber. The flame front development was visualized by a high-speed (9000 frame/s) digital video camera and flame images were synchronized with ignition timing and chamber pressure data. The tests were carried out with lean, stoichiometric and rich mixtures of methane in air. The images were used to calculate highly resolved temporal and spatial data for the changes in flame shape, speed, and the length of the flame front. The results are discussed in terms of the influence of mixture equivalence ratio on the flame structure and resulting overpressure. The reported data revealed significant changes in flame structure as a result of the interaction between the propagating flame front and the transient recirculating flow formed behind the solid obstacle. Combustion images show that the flame accelerates and decelerates as it impinges on the obstacle wall boundaries. It is also found that the mixture concentrations have a significant influence on the nature of the flame/solid interactions and the resulting overpressure. The highest flame speed of 40 m/s was obtained with the unity fuel–air equivalence ratio. Burning of trapped mixture behind the solid obstruction was found to be highly correlated with the flame front length and the rate of pressure rise.  相似文献   

13.
Wing-body junction turbulence flow is simulated by using RANS equation and boundary fitted coordinate technique.Three order differential scheme is used in the computation of convection term and two layers turbulence model are employed in the calculation.  相似文献   

14.
15.
Laser-Doppler measurements of laminar and turbulent flow in a pipe bend   总被引:3,自引:0,他引:3  
Laser-Doppler measurements are reported for laminar and turbulent flow through a 90° bend of circular cross-section with mean radius of curvature equal to 2.8 times the diameter. The measurements were made in cross-stream planes 0.58 diameters upstream of the bend inlet plane, in 30, 60 and 75° planes in the bend and in planes one and six diameters downstream of the exit plane. Three sets of data were obtained: for laminar flow at Reynolds numbers of 500 and 1093 and for turbulent flow at the maximum obtainable Reynolds number of 43 000. The results show the development of strong pressure-driven secondary flows in the form of a pair of counter-rotating vortices in the streamwise direction. The strength and character of the secondary flows were found to depend on the thickness and nature of the inlet boundary layers, inlet conditions which could not be varied independently of Reynolds number. The quantitative anemometer measurements are supported by flow visualization studies. Refractive index matching at the fluid-wall interface was not used; the measurements consist, therefore, of streamwise components of mean and fluctuating velocities only, supplemented by wall pressure measurements for the turbulent flow. The displacement of the laser measurement volume due to refraction is allowed for in simple geometrical calculations. The results are intenden for use as benchmark data for calibrating flow calculation methods.  相似文献   

16.
The onset of instability in the flow by an impulsively started rotating cylinder is analyzed under linear theory. It is well-known that at the critical Taylor number Tc=1695 the secondary flow in form of Taylor vortices sets in under the narrow-gap approximation. Here the dimensionless critical time c to mark the onset of instability for TTc is presented as a function of the Taylor number T. Available experimental data of water indicate that deviation of the velocity profiles from the primary flow occurs starting from a certain time 4c. It seems evident that during c4c the secondary flow is very weak and the primary state of time-dependent annular Couette flow is maintained.  相似文献   

17.
A new turbulent flow with distinct three‐dimensional characteristics has been designed in order to study the impact of mean‐flow skewing on the turbulent coherent vortices and Reynolds‐averaged statistics. The skewing of a unidirectional plane Couette flow was achieved by means of a spanwise pressure gradient. Direct numerical simulations of the statistically steady Couette–Poiseuille flow enabled in‐depth explorations of the turbulence field in the skewed flow. The imposition of a modest spanwise gradient turned the mean flow about 8° away from the original Couette flow direction and this turning angle remained nearly the same over the entire cross section. Nevertheless, a substantial non‐alignment between the turbulent shear stress angle and the mean velocity gradient angle was observed. The structure parameter turned out to slightly exceed that in the pure Couette flow, contrary to the observations made in some other three‐dimensional shear flows. Coherent flow structures, which are known to be associated with the Reynolds shear stress in near‐wall regions, were identified by the λ2‐criterion. Instantaneous and ensemble‐averaged vortices resembled those found in the unidirectional Couette flow. In the skewed flow, however, the vortex structures were turned to align with the local mean‐flow direction. The conventional symmetry between Case 1 and Case 2 vortices was broken due to the mean‐flow three‐dimensionality. The turning of the coherent vortices and the accompanying symmetry‐breaking gave rise to secondary and tertiary turbulent shear stress components. By averaging the already ensemble‐averaged shear stresses associated with Case 1 and Case 2 vortices in the homogeneous directions, a direct link between the educed near‐wall structures and the Reynolds‐averaged turbulent stresses was established. These observations provide evidence in support of the hypothesis that the structural model proposed for two‐dimensional turbulent boundary layers remains valid also in flows with moderate mean three‐dimensionality. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
利用高速阴影照相系统,对方形管道内火焰流经悬吊圆柱时所产生的变化及其诱导的流场进行了实验研究,并利用高精度PPM格式对上述现象进行了数值模拟,其中,湍流采用大涡模拟(LES)方法,燃烧采用旋涡破碎(EBU)模型,圆柱边界采用沉浸边界法(IBM).实验结果与计算结果比较吻合,在一定程度上揭示了火焰阵面变形和加速的规律. 根据研究结果,对火焰与悬吊圆柱相互作用过程中火焰的三维形状、流场中涡量和湍流强度的分布、火焰与流场的相互影响以及火焰传播轨迹等进行了讨论.   相似文献   

19.
Axisymmetrically stable turbulent Taylor vortices between two concentric cylinders are studied with respect to the transition from vortex to wall driven turbulent production. The outer cylinder is stationary and the inner cylinder rotates. A low Reynolds number turbulence model using the kω formulation, facilitates an analysis of the velocity gradients in the Taylor–Couette flow. For a fixed inner radius, three radius ratios 0.734, 0.941 and 0.985 are employed to identify the Reynolds number range at which this transition occurs. At relatively low Reynolds numbers, turbulent production is shown to be dominated by the outflowing boundary of the Taylor vortex. As the Reynolds number increases, shear driven turbulence (due to the rotating cylinder) becomes the dominating factor. For relatively small gaps turbulent flow is shown to occur at Taylor numbers lower than previously reported. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
A new shock tube facility with a 30.5 cm (1 ft) inside diameter is currently in operation that allows for high-spatial-resolution measurements of compressible turbulence. Small scales of turbulence behave very differently from large scales when they interact with shock or expansion waves. Highly resolved measurements can provide new information on the interaction at small scales. Another notable characteristic of the present facility is the ability to control the flow velocity behind the reflected shock through the porosity of the reflecting wall. Tests showed good flow quality with sufficiently long observation times. Measurements of piecewise average skin friction over short segments of the tube indicated strong viscous effects very close to the diaphragm where the shock is developing. The skin friction and the shock propagation speed virtually remained constant inside the working section of the shock tube in all investigated flow cases, even in low Mach number cases where viscous effects are stronger. The experimental results are compared with numerical simulations, including the effects of the reflecting porous wall and viscous effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号