首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The paper presents a simple theoretical model of the breakdown of the supersonic plasma jet generated by the hollow cathode discharge inside the nozzle in the low pressure RF plasma-chemical reactor. Through the nozzle which is drilled in the RF electrode the working gas flows to the reactor chamber. If at the outlet of the nozzle the gas flow is supersonic the well defined plasma jet is created inside the reactor chamber. The results of our model are in qualitative agreement with experimental data.  相似文献   

2.
提炼了由入射激光能量、能量沉积率、环境气体压强、喷管母线长度及其半顶角组合而成的圆锥形喷管无量纲因子,并将其推广到抛物形喷管的研究中。用辐射流体力学计算程序计算了4种半顶角下圆锥形和抛物形喷管的冲量耦合系数随无量纲因子的变化规律。计算结果表明:两种喷管的冲量耦合系数都存在极大值,极大值对应的无量纲因子约为0.4;无量纲因子相同时,半顶角越小,冲量耦合系数越大;同等条件下抛物形喷管的冲量耦合系数高于圆锥形喷管的冲量耦合系数。  相似文献   

3.
超声速等离子体射流的数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
基于可压缩的全Naiver-Stokes方程,利用PHOENICS程序对由会聚 辐射阳极形状等离子体炬产生的超声速等离子体射流进行了数值模拟.考虑了等离子体的黏性、可压缩性以及变物性对等离子体射流特性影响.研究了超声速等离子体射流的流场结构特性以及不同环境压力对等离子体射流产生激波结构的影响.结果表明,超声速等离子体射流在喷口附近形成的周期性激波结构是其和环境气体相互作用的结果. 关键词: 等离子体炬 超声速等离子体射流 PHOENICS  相似文献   

4.
The gas dynamics of a supersonic radial jet was studied under conditions close to cold spraying. The jet visualization was performed for exhaustion into submerged space with atmospheric pressure and jet impingement to a target. For the cases of swirled and unswirled supersonic radial jets, the pressure profiles measured by a Pitot tube were taken for different distances from the nozzle outlet and for different widths of supersonic part δ ex = 0.5?2 mm and for prechamber pressure in the range p 0 = 1?2.5 MPa.  相似文献   

5.
Intensification of mixing between the gaseous working body ejected through a jet nozzle with ambient medium is an important scientific and technical problem. Effective mixing can increase the total efficiency of power and propulsion apparatuses. The promising approach, although poorly studied, is generation of acoustic self-oscillation inside the jet nozzle: this impact might enhance the decay of a supersonic jet and improve the mixing parameters. The paper presents peculiar properties of acoustic self-excitation in jet nozzle. The paper presents results of experimental study performed for a model injector with a set of plates placed into the flow channel, enabling the excitation of acoustic self-oscillations. The study reveals the regularity of under-expanded supersonic jet decay in submerged space for different flow modes. Experimental data support the efficiency of using the jet nozzle with acoustic self-oscillation in application to the systems of gas fuel supply. Experimental results can be used for designing new power apparatuses for aviation and space industry and for process plants.  相似文献   

6.
Results of a numerical and experimental study of flow-field characteristics in the test section of the T-313 supersonic blow-down wind tunnel of ITAM SB RAS at Mach number M = 7 are reported. The distributions of local Mach numbers, stagnation temperatures, static pressures, angles of flow deflection from the test-section axis were analyzed. For comparison, distributions of Mach numbers across the flow at several stations at M = 5 and 6 are reported as well. We show that, in the T-313 wind tunnel, two-dimensional nozzle inserts can be used to perform experiments at M = 7.  相似文献   

7.
A technique for designing the supersonic annular inlets with isentropic deceleration surfaces is considered. The contour of an isentropic supersonic nozzle constructed by the method of characteristics for an inviscid gas flow with given uniform parameters at the inlet and at the outlet is used as the basic configuration of the inlet. The reversed flow of a viscous gas is computed with the aid of numerical techniques in the contour under consideration and the real operational characteristics of the obtained inlet of a fixed geometry are determined in the range of the conditions of its application. In the process of computations, the minimum cross-sectional sizes are selected, which ensure the inlet start without a detached bow shock at the entrance.  相似文献   

8.
The paper presents the radial distributions of the pressure measured with a Pitot tube for the case of a radial jet with/without swirling of the input flow in the pre-chamber; the length of the supersonic part of the jet, dependency of the jet thickness as a function of the distance from the nozzle outlet, and approximating analytical formula for the jet thickness that generalizes the experimental data. Experimental data demonstrated that at the deposition distances lower than 4-6 gauges from the nozzle outlet, the solid particle velocity and temperature are almost uniform over the jet cross section. This means that the target surface can be allocated here without loss in coating quality and deposition coefficient. The maximal recommended distance where the deposition is still possible is the length of l s0 ~ 16 gauges.  相似文献   

9.
变截面超音速汽液两相流升压过程的研究   总被引:10,自引:2,他引:10  
本文针对超音速汽液两相流在变截面通道中的升压过程进行了实验研究,得到了变截面混合腔中超音速汽液两相流的压力变化规律,通过实验结果的分析得出了变截面混合腔中的渐缩部分的压力分布与出口压力无关、变截面通道的渐扩部分为一个单相流体扩压管、压力突变发生在变截面混合腔喉部和随着出口压力升高而激波强度增大、变截面超音速汽液两相流升压技术具有定流量特征等结论。  相似文献   

10.
We report an experimental study of ignition of flammable mixtures by highly unexpanded, supersonic hot jets. The high-pressure, hot-gas reservoir supplying the jet is created by impacting a projectile on a plunger to rapidly compress and ignite a rich n-hexane/air mixture, resulting in a peak reservoir pressure of more than 20 MPa. A locking mechanism was used to prevent the plunger from rebounding and the jet was created by rupturing a diaphragm covering a nozzle with an exit diameter between 0.25 and 1 mm. The jet development and ignition processes in the main chamber filled with hexane-air mixture were visualized using high-speed schlieren and OH* chemiluminescence imaging. The ignition threshold was determined as a function of composition in the jet and main chamber, the nozzle diameter, and the initial pressure in the main chamber. Unlike the case of subsonic jets in which ignition occurs at the shear layer near the nozzle exit, ignition of combustion in the main chamber was found to take place downstream of the Mach disk terminating the supersonic expansion and within the turbulent mixing region created by the startup of the supersonic jet. The results are interpreted using a constant-pressure, well-stirred reactor model simulating the mixing between the hot jet and cold ambient gas. The critical conditions for ignition are determined by the competition between energy release due to chemical reactions initiated by the hot jet gas and cooling due to mixing with the cold chamber atmosphere. The critical value (maximum for which ignition occurs) of the mixing rate was computed using a detailed chemical reaction model and found to be a useful qualitative guide to our observations.  相似文献   

11.
During laser cutting of stainless steels, titanium and aluminum alloys, a coaxial and high pressure inert gas jet is used to improve the cut edge quality. The process normally consumes a large amount of inert gas and has a poor tolerance to variation in process parameters. This is solely because the gas nozzles are mostly of the conical and convergent type in which the gas jets are subsonic. Based on two dimensional steady state gas dynamic theory, computer simulation and shadowgraphic techniques, the gas jet patterns from conical nozzles and the newly designed supersonic nozzles are analyzed. The distribution of pressure, momentum, gas density and existence of shock waves are predicted and mapped. Based on these characteristics, the effect of the gas jets upon the cut quality is explained. It is concluded that a supersonic gas jet offers the best flow characteristics for high pressure laser cutting.  相似文献   

12.
徐逸  A.S.Boldarev  Dong Eon Kim  陈光龙 《物理学报》2015,64(1):13601-013601
本文通过对高背压(50 bar, 1 bar = 1.0×105 Pa)氩气经长锥型喷嘴(长度L=30 mm)向真空绝热膨胀所形成的超声气体团簇喷流的数值模拟, 分析比较了由喷嘴喉口起沿喷流方向在喷流中心轴线上团簇平均尺寸的演化情况. 结果表明: 沿喷流方向团簇平均尺寸显示先增长后趋于饱和的变化趋势, 具有较大尺寸团簇的区域出现在距离喷嘴喉口大约20 mm. 据此本文再结合关于喷流中原子密度沿喷流方向变化的模拟结果开展了锥形喷嘴长度的优化研究. 针对由常见构型的锥形喷嘴(喉径~ 0.5 mm, 半张角~ 8.5°)在高背压下形成的团簇喷流, 20 mm左右的长度为锥形喷嘴的适宜长度.  相似文献   

13.
Basic methods for obtaining laser jet thrust in the supersonic regime corresponding to the supersonic flow in the jet nozzle are analyzed. It is shown that the method based on the interaction of a laser ablative jet with the supersonic flow is promising. In this case, laser thrust is formed due to additional acceleration of the flow behind the ablation region. Numerical simulation of the flow in a parabolic nozzle is employed to demonstrate the possibility of effective formation of laser thrust at a level of 3 × 10?3 N/W.  相似文献   

14.
The results of theoretical and experimental investigations of the interaction of a gas jet with the surface of a viscous liquid are reported. Relations are derived for calculating the force exerted by the gas jet on the liquid surface. A dependence of the gas jet compression ratio in the nozzle outlet on the pressure in front of the nozzle is revealed. The values of the shape factor for the indentation formed by the gas jet on the surface of the liquid are determined for various diameters of the indentation and the distances between the outlet hole of the nozzle and the liquid surface. The theoretical conclusions formulated here are confirmed by the results of experiments.  相似文献   

15.
本文首先详细重演了锥形喷嘴的等效孔径deq, 并根据deq的定义给出了它与气体团簇喷流的径向宽度之间的依赖关系. 然后以高背压氩气团簇喷流为例, 通过成像喷流的Rayleigh 散射光的空间分布研究了不同背压下喷流的径向宽度, 并与Hagena 团簇尺度定律中直线流模型假设的喷流径向宽度进行了比较. 结果表明, Hagena 直线流模型假设的喷流径向宽度小于实际的径向宽度, 且实际宽度与气体背压有关. 进一步的研究表明, 直线流模型对喷流宽度的估计偏差导致对锥形喷嘴等效孔径的估计偏差, 这为Hagena 尺度定律估计团簇平均尺寸的偏差给出了一种可能的解释. 关键词: 气体团簇 Hagena尺寸定律 锥形喷嘴的等效孔径  相似文献   

16.
A chemical oxygen–iodine laser (COIL) that operates without primary buffer gas has become a new way of facilitating the compact integration of laser systems. To clarify the properties of spatial gain distribution, three-dimensional (3-D) computational fluid dynamics (CFD) technology was used to study the mixing and reactive flow in a COIL nozzle with an interleaving jet configuration in the supersonic section. The results show that the molecular iodine fraction in the secondary flow has a notable effect on the spatial distribution of the small signal gain. The rich iodine condition produces some negative gain regions along the jet trajectory, while the lean iodine condition slows down the development of the gain in the streamwise direction. It is also found that the new configuration of an interleaving jet helps form a reasonable gain field under appropriate operation conditions.  相似文献   

17.
宝石喷嘴是影响超高压水射流切割系统工作效率的重要部件,而宝石内部的空化直接影响射流的形成,也是宝石磨损的重要原因之一。对400 MPa压力范围内宝石孔内部的空化两相流进行了数值模拟,阐述了射流在宝石内的形成过程,分析了长径比、压力和入口形状对宝石内空化的影响,并在相应压力下对宝石喷嘴的磨损进行了实验研究。结果表明:宝石内部的空化发展程度随着长径比的增大而减弱;在一定的长径比范围内,空化可以发展到喷嘴出口,并最终使射流的初始直径小于喷嘴直径,且在此条件下当压力升高时,射流的初始直径增大;良好的入口形线可以降低空化的发展程度;宝石入口的磨损较出口更显著,空蚀和高压水的冲蚀造成了宝石孔边缘形状的破坏,这种破坏随着压力的升高而加剧,选择合适的长径比是减少冲蚀磨损的有效途径。  相似文献   

18.
The present paper studies high-velocity heterogeneous flows produced with nozzle designs unconventional for cold spray; the process of coating deposition was studied under these conditions. The possibility of using unconventional gas dynamic tools (swirling of main flow, nozzles with permeable profiles and with slots in the supersonic part of nozzle) for control of particle distribution in the supersonic jet is investigated: this might be useful for obtaining a proper shape of the spray spot. These experiments offered a method of gas-dynamic design for the spray spot shape, which extends the possibilities of cold spray technique.  相似文献   

19.
When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect; its state equation remains always valid, except, it is named in more by calorically imperfect gas. The aim of this work is to trace the profiles of the supersonic axisymmetric Minimum Length Nozzle to have a uniform and parallel flow at the exit section, when the stagnation temperature is taken into account, lower than the dissociation threshold of the molecules, and to have for each exit Mach number and stagnation temperature shape of nozzle. The method of characteristics is used with the algorithm of the second order finite differences method. The form of the nozzle has a point of deflection and an initial angle of expansion. The comparison is made with the calorically perfect gas. The application is for air.  相似文献   

20.
Experimental investigations have indicated that electrode vapor can have a significant negative effect in thermal interruption speed for the gas-blast circuit breakers. This electrode vapor contamination can be minimized by the use of asymmetric dual-flow nozzle configuration. A computer program was developed to design the nozzle and electrode geometries of the asymmetric dual-flow interrupter and to calculate both the subsonic and supersonic cold flow fields. The Variational Principle of the finite element method, together with a Newton-Raphson iterative scheme, was used to solve the continuity equation for compressible flow. The supersonic flow field in the conical nozzle was calculated by the one-dimensional flow relationship. Two asymmetric dual-flow nozzle models were constructed to investigate the effects of orifice opening and nozzle divergent angle. The cold flow experiments were conducted in the Rensselaer Polytechnic Institute (RPI) Transonic and Supersonic Wind Tunnel Laboratory. Various upstream-to-downstream nozzle pressure ratios were used to obtain the subsonic and supersonic experimental flow-field data. The experimental flow measurements were correlated with the calculated values to validate the computer program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号