首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Receptors on the surface of mammalian cells promote the uptake of cell-impermeable ligands by receptor-mediated endocytosis. To mimic this process, we synthesized small molecules designed to project anti-dinitrophenyl antibody-binding motifs from the surface of living Jurkat lymphocytes. These synthetic receptors comprise N-alkyl derivatives of 3beta-cholesterylamine as the plasma membrane anchor linked to 2,4-dinitrophenyl (DNP) and structurally similar fluorescent 7-nitrobenz-2-oxa-1,3-diazole (NBD) headgroups. Insertion of two beta-alanine subunits between a DNP derivative and 3beta-cholesterylamine yielded a receptor that avidly associates with cell surfaces (cellular t(1/2) approximately 20 h). When added to Jurkat cells at 10 microM, this receptor enhanced uptake of an anti-DNP IgG ligand by approximately 200-fold in magnitude and approximately 400-fold in rate within 4 h (ligand internalization t(1/2) approximately 95 min at 37 degrees C). This non-natural receptor mimics many natural receptors by dynamically cycling between plasma membranes and intracellular endosomes (recycling t(1/2) approximately 3 min), targeting of protein ligands to proposed cholesterol and sphingolipid-enriched lipid raft membrane microdomains, and delivery of protein ligands to late endosomes/lysosomes. Quantitative dithionite quenching of fluorescent extracellular NBD headgroups demonstrated that other 3beta-cholesterylamine derivatives bearing fewer beta-alanines in the linker region or N-acyl derivatives of 3beta-cholesterylamine were less effective receptors due to more extensive trafficking to internal membranes. Synthetic cell surface receptors have potential applications as cellular probes, tools for drug delivery, and methods to deplete therapeutically important extracellular ligands.  相似文献   

2.
This review gave a brief introduction on recent development in monocyclic and multicyclic peptide mimics of antibodies and provides a perspective on screening and design of multicyclic peptide mimics of antibodies in the future.  相似文献   

3.
The molecular imprinting approach provides a unique opportunity for the creation of three-dimensional cavities with tailored recognition properties. Over the last decade this field has expanded considerably, across a variety of disciplines, leading to novel approaches and many potential applications. Progress in the field of materials science has led to significant breakthroughs and the application of the imprinting approach to novel polymeric formats offers new insights and attractive methods for the preparation of synthetic receptors. In particular, nanomaterials have received considerable attention in the developing field of nanotechnology. With a large number of recent developments in the field of molecular imprinting available, this article is focused on a selection of new systems, in particular the different formats of nanomaterials, such as nanogels, nanofibres, nanowires and nanotubes.  相似文献   

4.
Specific receptors on the surface of mammalian cells actively internalize cell-impermeable ligands by receptor-mediated endocytosis. To mimic these internalizing receptors, my laboratory is studying artificial cell surface receptors that comprise N-alkyl derivatives of 3beta-cholesterylamine linked to motifs that bind cell-impermeable ligands. When added to living mammalian cells, these synthetic receptors insert into cellular plasma membranes, project ligand-binding small molecules or peptides from the cell surface, and enable living cells to internalize targeted proteins and other cell-impermeable compounds. These artificial receptors mimic their natural counterparts by rapidly cycling between plasma membranes and intracellular endosomes, associating with proposed cholesterol and sphingolipid-rich lipid raft membrane microdomains, and delivering ligands to late endosomes/lysosomes. This "synthetic receptor targeting" strategy is briefly reviewed here and contrasted with other related cellular delivery systems. Potential applications of artificial cell surface receptors as molecular probes, agents for cellular targeting, tools for drug delivery, and methods for ligand depletion are discussed. The construction of synthetic receptors as prosthetic molecules, designed to seamlessly augment the molecular machinery of living cells, represents an exciting new frontier in the fields of bioorganic chemistry and chemical biology.  相似文献   

5.
In this report, we present the first library of tripodal synthetic receptor molecules containing three different, temporarily N-terminal protected peptide arms capable of performing hydrolytic reactions. To construct this library, the orthogonally protected triazacyclophane (TAC)-scaffold was used in the preparation of a split-mix library of 19 683 resin bound tripodal receptor molecules. For the construction of the peptide arms, three different sets of amino acids were used, each focused on one part of the catalytic triad as found in several families of hydrolytic enzymes. Therefore, in the sets of amino acids used to assemble these tripeptides, basic (containing His and Lys), nucleophilic (containing Ser and Cys), or acidic (containing Asp and Glu) amino acid residues were present. In addition, nonfunctional hydrophobic amino acid residues were introduced. Possible unfavorable electrostatic interactions of charged N-termini or their acetylation during screening were circumvented by trifluoroacetylation of the N-terminal amines. Screening was performed with a known esterase substrate, 7-acetoxycoumarin, which upon hydrolysis gave the fluorescent 7-hydroxycoumarin, leading to fluorescence of beads containing a hydrolytically active synthetic receptor. Although many synthetic receptors contain catalytic triad combinations, apparently, only a few showed hydrolytic activity. Sequence analysis of the active receptors showed that carboxylate-containing amino acids are frequently found in the acidic arm and that substrate cleavage is mediated by lysine (noncatalytic) or histidine (catalytic) residues. Kinetic analysis of resynthesized receptors showed that catalysis depended on the number of histidine residues and was not assisted by significant substrate binding.  相似文献   

6.
Enzyme mimics     
Chemists are trying to create synthetic molecules which mimic the recognition and catalytic properties of real enzymes. One target of interest is catalysis of reactions for which there are no known natural enzymes. Inspired by the examples of nature, approaches to the design of enzyme mimics for catalysis of Diels-Alder reaction are described. The design is based on porphyrin molecular boxes and zinc co-ordination. The potential of design of enzyme mimics employing cholic acid and other systems is also discussed.  相似文献   

7.
综述了ATP酶的化学模拟的研究进展。  相似文献   

8.
A combination approach in solid-phase microextraction, based on a molecularly imprinted polymer-brush coating on an optical fiber coupled with a complementary molecularly imprinted polymer sensor, has been adopted for isolation, preconcentration, and analysis of dopamine at ultratrace levels in highly dilute aqueous samples. This combination enabled enhanced (up to 8.5-fold) preconcentration of the analyte, which is appropriate for achieving a stringent detection limit in clinical diagnosis of several neurodegenerative diseases. The detection limit of dopamine in biological samples was 0.018 ng mL?1 with a relative standard deviation less than 2.1% and without any non-specific contributions.  相似文献   

9.
《Analytical letters》2012,45(6):919-928
Molecular imprinted polymer was synthesized by polymerization of methacrylate and ethylene glycol dimethacrylate in presence of tetracycline. The prepared polymer exhibited selectivity of 1.8 to 3.9 over non-imprinted polymer depending on nature of solvent. In water, 3.45 mg of tetracycline bind to 1 g of imprinted polymer. Non-covalent interactions between tetracycline and polymer provided selectivity to imprinted polymer. The polymer was evaluated in column chromatography and the bound tetracycline can be eluted with acetonitrile. Ciprofloxacin interacted with imprinted polymer, whereas amoxicillin did not. The feasibility of using MIP for concentrating tetracycline from milk has been demonstrated.  相似文献   

10.
介绍了生物大分子印迹技术及其印迹聚合物的研究进展,其中包括对蛋白质、核酸、微生物细胞进行分子印迹所采用的印迹方法、机理以及存在的问题,最后简要探讨了生物大分子印迹聚合物在医学研究中的应用前景。  相似文献   

11.
In this review, the applications of molecularly imprinted polymer (MIP) materials in the area of electrochemical sensors have been explored. The designs of the MIPs containing different polymers, their preparation and their immobilization on the transducer surface have been discussed. Further, the employment of various transducers containing the MIPs based on different electrochemical techniques for determining analytes has been assessed. In addition, the general protocols for getting the electrochemical signal based on the binding ability of analyte with the MIPs have been given. The review ends with describing scope and limitations of the above electrochemical based MIP sensors.  相似文献   

12.
Catalase-like activity of the TEMPO-activated (TEMPO: 2,2,6,6-tetramethyl-1-piperidinyloxyl) manganese(II) complex Mn(IndH)Cl2·CH3OH (IndH: 1,3-bis[(2′-pyridylimino)isoindoline] is reported. The title compound was a suitable catalyst for the disproportionation of H2O2 into water and dioxygen under ambient conditions. Kinetic measurements resulted in the third-order rate equation d[O2]/dt = k[H2O2][Mn(IndH)Cl2·CH3OH][TEMPO].  相似文献   

13.
构建一个高灵敏、高选择性检测痕量分析物的传感器广受科研工作者关注。分子印迹技术由于具有高选择性识别、高容量吸附、快速结合、热稳定性以及低成本等优点,已广泛应用于传感构建领域。以分子印迹聚合物为识别单元,结合荧光传感技术所构建的分子印迹荧光传感器在环境污染物痕量检测方面成为研究重点。本文主要介绍分子印迹聚合物的制备方法,总结分子印迹荧光传感器的构建机理和分子印迹荧光传感器在金属离子、有机小分子以及生物大分子检测方面的应用。重点探讨分子印迹传感器在不同数量的荧光团下检测一种或多种目标分析物的方法,包括单一荧光团检测单一目标物、比率荧光检测单一目标物以及分子印迹荧光传感的多元检测。基于以上分析和总结,提出分子印迹荧光传感器的当前挑战和发展前景。  相似文献   

14.
二西基锡分子印迹聚合物的合成与性能研究   总被引:1,自引:0,他引:1  
以壳聚糖(CTS)为基体, 二丁基锡(DBT)为模板, 采用分子印迹技术制备了在空间结构和结合位点上与DBT匹配的分子印迹聚合物(DBT-MIPs). 研究了该分子印迹聚合物的合成条件、对DBT的吸附性能和选择识别能力, 并对其结构进行了表征. 结果表明, 所合成的DBT-MIPs对DBT具有良好的吸附和选择识别能力, 最大吸附量为178.6 μg/g.  相似文献   

15.
以莠去津(1)为模板分子,甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,在偶氮二异丁腈(AIBN)的引发下,于65℃聚合17 h合成了对1有特异识别性能的分子印迹聚合物(2)。用紫外分光光度法探索了1与MAA的最佳比例,研究了2的吸附性能力,并利用高效液相色谱法对2的选择性进行了考察。用Scatchard法分析表明,2通过氢键作用力结合,存在两种结合位点,对1的吸附存在两种形态,最大表观吸附量(Qmax,1)为130.9 nmol.g-1,平衡离解常数(Kd,1)为30.8 nmol.L-1,Qmax,2为540.5 nmol.g-1,Kd,2为450.5 nmol.L-1。与西玛津相比,2对1显示出一定的选择性。以2作为填料制备出具有莠去津分子印迹的固相萃取柱,可对水质中2×10-8mol.L-1以下的待测物进行富集和分离,回收率近90%。  相似文献   

16.
分子印迹聚合物是具有与模板分子形状、大小及官能团完全匹配的特异识别位点的高分子聚合物,能选择性识别、有效富集目标分析物(模板分子)并去除干扰物,已广泛应用于样品前处理、化学/生物传感、药物输送等领域.然而,在合成过程中,仍存在模板分子洗脱困难、有效识别位点少、结合容量低、传质速率慢等问题.核-壳型分子印迹聚合物即在核层颗粒表面进行分子印迹,即表面印迹,印迹位点仅存在于壳层结构中,利于模板分子洗脱及扩散,能够增加有效识别位点并提高印迹容量.依据核层材料的不同,本文详细介绍了以磁性材料及非磁性材料为核的核-壳型分子印迹聚合物的合成与应用,探讨了中空核-壳分子印迹聚合物的制备与发展,并对核-壳印迹聚合物的发展前景进行了展望.  相似文献   

17.
《广州化学》2017,(6):26-31
以纤维素为原料,1-乙烯基咪唑为最佳功能单体,2,4-二氯苯酚(2,4-DCP)作为模板分子,采用分子印迹技术结合原子转移自由基聚合方法,制备纤维素基印迹吸附材料。利用红外光谱(FT-IR)及扫描电镜(SEM)对材料的结构及性能进行了表征,并对纤维素印迹吸附剂的选择性吸附性能进行研究。  相似文献   

18.
L-组氨酸手性识别印迹固定相的制备及表征   总被引:3,自引:0,他引:3  
以L-组氨酸为模板分子, 甲基丙烯酸为功能单体, 乙二醇二甲基丙烯酸酯为交联剂, 偶氮二异丁腈为引发剂, 在水-乙腈微乳体系中采用沉淀聚合方法制备了具有手性识别L-组氨酸功能的印迹微球. 采用静态平衡吸附实验及色谱分析探讨聚合微球对模板分子的选择识别吸附性能. 结果表明, 该印迹聚合物微球对模板分子存在两种结合位点, 最大表观结合量分别为33.04和24.16 μmol/g. 相对于常规的C18柱, 该印迹聚合物填充柱能够完全分离L-组氨酸和D-组氨酸, 分离度R为2.23, 选择因子为2.14. 利用差热分析、红外光谱及X射线衍射等技术表征聚合物微球的热性能及结构. 结果表明, 聚合物微球具有良好的热稳定性, 是一种具有部分晶体结构的聚合物.  相似文献   

19.
克百威分子印迹聚合物的合成及其性能评价   总被引:5,自引:0,他引:5  
以克百威为模板分子,甲基丙烯酸(MAA)为功能单体,二甲基丙烯酸乙二醇酯(EGDMA)为交联剂,采用沉淀聚合的方法制备了克百威分子印迹聚合物。通过红外光谱分析得到模板和功能单体的最佳配比为n(carbofuran)∶n(MAA)=1∶6。印迹聚合物的红外光谱测定结果表明,聚合物中存在与模板分子相互作用的特征基团;从印迹聚合物的扫描电镜图观察到分子印迹聚合物(MIP)与空白聚合物(NIP)的表面形态不同,可推论MIP存在与模板分子相互识别的结合位点。通过静态平衡结合法研究了模板分子聚合物的吸附能力、结合动力学和选择特性。结果表明,与非印迹聚合物相比,印迹聚合物对克百威具有较强的吸附特性和很好的专一选择性,3h后基本达到最大吸附量。采用固相萃取柱预处理样品,用高效液相色谱法测定自来水中10、50、100mg/L克百威的加标回收率为94%~117%,相对标准偏差(n=3)为2.5%~4.7%。  相似文献   

20.
对羟基苯乙酮分子印迹聚合物的制备及性能研究   总被引:1,自引:0,他引:1  
采用分子印迹技术,以对羟基苯乙酮为模板分子,丙烯酰胺为功能单体,乙二醇二甲基丙烯酸酯为交联剂,合成了对模板分子对羟基苯乙酮具有良好选择性的印迹聚合物.通过静态平衡结合法以及Scatchard分析法研究了该聚合物的结合能力和选择性能.结果表明,该印迹聚合物平衡离解常数Kd=0.415 mmol/L,最大表观结合量Qmax=144.79 μmol/g.红外光谱研究表明聚合物中存在着与模板分子相互作用的特征基团.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号