首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One-dimensional silicon-carbon nanotubes and nanowires of various shapes and structures were synthesized via the reaction of silicon (produced by disproportionation reaction of SiO) with multiwalled carbon nanotubes (as templates) at different temperatures. A new type of multiwalled silicon carbide nanotube (SiCNT), with 3.5-4.5 A interlayer spacings, was observed in addition to the previously known beta-SiC (cubic zinc blende structure) nanowires and the biaxial SiC-SiO(x) nanowires. The SiCNT was identified by high-resolution transmission microscopy (HRTEM), elemental mapping, and electron energy loss spectroscopy (EELS). The multiwalled SiCNT was found to transform to a beta-SiC crystalline structure by electron beam annealing under TEM.  相似文献   

2.
Aligned silicon carbide nanowire crossed nets (a-SiCNWNs) were directly synthesized by using a vapor-solid reaction at 1100 degrees C. Zinc sulfide was used as catalyst to assist the growth of a-SiCNWNs with small size and crystal structure. After functionalization with perfluoroalkysilane, a-SiCNWNs showed excellent superhydrophobic property with a high water contact angle more than 156 +/- 2 degrees , compared to random nanowires (147 +/- 2 degrees ) and pure silicon wafers (101 +/- 2 degrees ). The topographic roughness and chemical modification with CF 2/CF 3 groups contributed the better superhydrophobicity. Furthermore, the as-grown SiCNWNs can be scraped off and coated on other substrates such as pure silicon wafers. The novel nanowire coating with good superhydrophobicity displays extensive applications in silicon-related fields such as solar cells, radar, etc.  相似文献   

3.
The reaction of crystalline silicon with carbon monoxide to produce silicon carbide was studied. Thermodynamic simulation of the equilibrium phase composition of the nSi-mCO system was carried out in the range 300–2000 K (27–1727°C). Conditions required for silicon carbide was carried out applying various experimental modes (n, m, and T) and possible pathways of the reactions were determined. Interaction between crystalline silicon and carbon monoxide formation in a temperature range of 1000–1450°C. The order of the reaction in CO was found to be close to unity. Silicon carbide nanofibers with thicknesses of from 5 to 100 nm were synthesized and characterized by powder X-ray diffraction, mass-spectral elemental analysis, and scanning electron microscopy. A possibility of synthesizing high-purity silicon carbide fibers were experimentally evaluated.  相似文献   

4.
ZSM-5 zeolite nanofibers with a size of 90 nm and lengths up to several micrometers were prepared via in-situ silicon carbide support self-transformation. The morphology and aggregation degree of these zeolite nanofibers could be modified by adjusting the pH conditions, the nature of the mineralizer (OH- or F-), or the synthesis duration. The novelty consists of the preparation of zeolite nanowires without the use of any organogelating agent, along with controlled macroscopic shapes (extrudates, foam monolith) for direct use as a structured reactor. Finally, these materials are catalytically active in the conversion of methanol to gasoline range hydrocarbons (MTG process) and hence exhibit the typical solid acidity of zeolitic materials.  相似文献   

5.
A Karman vortex street was employed to pattern catalysts and grow nanomaterial arrays, which were made of a disk-like superstructure built of silicon nanowires; there also existed nanowires connected with the disks.  相似文献   

6.
Nanocrystalline silicon carbide has been prepared via reacting magnesium silicide (Mg2Si) with carbon tetrachloride (CCl4) in an autoclave at 450-600°C. X-ray diffraction patterns of the products can be indexed as the cubic cell of SiC with the lattice constant, a=4.352 Å, in good agreement with a=4.349 Å (JCPDS card No. 75-0254). The transmission electron microscopy images show that the sample mainly consists of nanoparticles with an average size from 30 to 80 nm co-existing with a small fraction of nanorods and nanowires. Typically the nanorods range from 20 to 40 nm in diameter and the nanowires have diameters of 20 nm and lengths up to 10 μm. The Raman spectrum shows a characteristic sharp peak at 790 cm−1. X-ray photoelectron spectra (XPS) gives an atomic ratio of Si to C as 1.08:1.00 from the quantification of the peak intensities. Photoluminescence spectrum reveals that the SiC sample emits ultraviolet light of 328 nm. A possible mechanism and the influence of temperature on the formation of crystalline SiC are proposed.  相似文献   

7.
Silicon nanowires with narrowly distributed diameters of 20-30 nm have been fabricated by chemical vapor deposition on an anodized aluminum oxide (AAO) substrate. The first-order and second-order Raman scatterings of the silicon nanowires have been studied in a temperature range from 123 to 633 K. Both of the first-order and second-order Raman peaks were found to shift and broaden with increasing temperature. The experimental results were analyzed by combining the phonon confinement effect, anharmonic phonon processes and lattice stress effect. It was found that the intensities of the first-order and second-order Raman bands have different dependences on temperature. The value of relative intensities I(2TA)int/I(2TO)int for silicon nanowires was found to be larger than that of bulk silicon, and increase with rising measurement temperature. We ascribe this phenomenon to the participation of phonons with a large wave vector value of Raman scattering caused by both the phonon confinement effect and the temperature effect.  相似文献   

8.
The communication reports on the high performance of hydrogen-terminated silicon nanowires and silicon nanowires coated with metal (Ag, Cu) nanostructures for the photodegradation of rhodamine B under UV and visible light irradiation.  相似文献   

9.
Thermogravimetry (TG) has been used to study the oxidation of a commercial silicon nitride bonded silicon carbide (SNBSC) ceramic. The oxidation was studied in air and carbon dioxide atmospheres between 800 and 1300°C. TG/mass spectrometry (MS) shows that the silicon nitride bonding phase oxidises first. The kinetics follow a multi-stage mechanism with diffusion control. Carbon dioxide was found to be a more powerful oxidant than air at temperatures above 1050°C.  相似文献   

10.
A novel method is presented based on the use of sacrificial interlayers for the preparation of nanoporous silicon carbide membranes. It involves periodic and alternate coatings of polystyrene sacrificial interlayers and silicon carbide pre-ceramic layers on the top of slip-casted tubular silicon carbide supports. Membranes prepared by this technique exhibit single gas ideal separation factors of helium and hydrogen over argon in the ranges 176–465 and 101–258, respectively, with permeances that are typically two to three times higher than those of silicon carbide membranes prepared previously by the more conventional techniques. Mixed-gas experiments with the same membranes indicate separation factors as high as 117 for an equimolar H2/CH4 mixture. We speculate that the improved membrane characteristics are due to the sacrificial interlayers filling the pores in the underlying structure and preventing their blockage by the pre-ceramic polymer. The new method has good promise for application to the preparation of a variety of other inorganic microporous membranes.  相似文献   

11.
Research on Chemical Intermediates - Iron oxide (Fe3O4) and copper-functionalized silicon nanowires (SiNWs) from silicon powder mesh?<?500 with a spherical structure have been...  相似文献   

12.
Dye S  Phillips D  Woodford D  Barrow I 《Talanta》1993,40(6):909-912
Silica fume is formed as a by-product in the manufacture of silicon from quartzite. This paper describes an analytical method for the determination of free carbon and silicon carbide in silica fume. The silicon carbide was determined after removal of free carbon, amorphous silica, crystalline silica, graphite and silicon from the fume. The free carbon content was found to vary from 2 to 8% while the silicon carbide content ranged from 1 to 5%. X-ray diffraction, thermal analysis, scanning electron microscopy and Fourier Transform infrared spectroscopy were used to validate the steps used in the analytical procedure. The purpose of determining the free carbon and silicon carbide content of the fume is to help understand the efficiency of the reduction process and mechanism of the reaction.  相似文献   

13.
Herein we report the fabrication of ZnO nanowires on anisotropic wet etched silicon substrates by selective hydrothermal growth. <100> oriented silicon wafers were first patterned by anisotropic wet etch with a KOH solution, resulting in V-shaped stripes of different periods. Then, a thin layer of gold was deposited and annealed to promote the hydrothermal growth of ZnO nanowires. It was found that the growth rate of ZnO nanowires on <111> surfaces was much higher than that on <100> surfaces. As a first application of such micro- and nanostructured surfaces, we show enhanced wetting properties by measuring the contact angle of water droplets on the samples obtained under different patterning and growth conditions. Our results also demonstrated the possibility of tuning the contact angle of the sample in the range between 115° and 155°, by changing either the pattern of the silicon template or the hydrothermal growth conditions.  相似文献   

14.
We present here the synthesis of silicon-based nanowires directly from silicon wafers at high temperatures and in the presence of cobalt nanoparticles and hydrogen gas. All three ingredients were critical to the growth of Si-based nanowires, which were between 5-60 nm in diameter and microm-mm long. Both heavily coiled and straight Si-based nanowires were made. Experimental evidence suggested that the sources of silicon for the nanowires growth were in the gas phase.  相似文献   

15.
A fast and accurate analytical method was established for the simultaneous direct determination of aluminum, calcium and iron in silicon carbide and silicon nitride powders by graphite furnace atomic absorption spectrometry using a slurry sampling technique and a Hitachi Model Z-9000 atomic absorption spectrometer. The slurry samples were prepared by the ultrasonication of silicon carbide or silicon nitride powders with 0.1 M nitric acid. Calibration curves were prepared by using a mixed standard solution containing aluminum, calcium, iron and 0.1 M nitric acid. The analytical results of the proposed method for aluminum, calcium and iron in silicon carbide and silicon nitride reference materials were in good agreement with the reference values. The detection limits for aluminum, calcium and iron were 0.6 microg/g, 0.15 microg/g and 2.5 microg/g, respectively, in solid samples, when 200 mg of powdered samples were suspended in 20 ml of 0.1 M nitric acid and a 10 microl portion of the slurry sample was then measured. The relative standard deviation of the determination of aluminum, calcium and iron was 5 - 33%.  相似文献   

16.
Summary The silicon distribution in silicon-containing pyrocarbon obtained by simultaneous pyrolysis of methane and silicon tetrachloride in the temperature range 1160–1630° C was followed by electron-probe microanalyser. Deposits obtained at about 1200° C contain about 4%w/w silicon in the form of silicon carbide. Very fine particles of SiC are homogeneously dispersed over the whole layer. Between 1300 and 1400° C larger lenticular inclusions of silicon carbide are formed which serve as nuclei for further crystallization of both silicon carbide and pyrocarbon. At the highest temperatures used (1600° C) only the solid solution containing 0.2%w/w silicon in pyrocarbon is deposited. It is supposed that the distribution of silicon in pyrocarbon is a result of temperature dependence of the nucleation and growth processes of silicon carbide.
Zusammenfassung Die Verteilung des Siliciums in siliciumhältigen, durch gleichzeitige Pyrolyse von Methan und Siliciumtetrachlorid bei 1160 bis 1630° C erhaltenen Pyrokohlenstoffproben wurde mit einer Mikrosonde verfolgt. Bei etwa 1200° C erhaltene Abscheidungen enthalten etwa 4% (g/g) Silicium als Carbid. Sehr kleine SiC-Partikel sind homogen über die ganze Schichte verteilt. Zwischen 1300 und 1400° C bilden sich größere, linsenförmige Einschlüsse von SiC, die als Kristall isationskeime sowohl für Siliciumcarbid wie für Pyrokohlenstoff wirken. Bei der höchstangewandten Temperatur (1600° C) wird nur die feste Lösung von 0,2% (g/g) Silicium in Pyrokohlenstoff abgeschieden. Daher wird angenommen, daß die Siliciumverteilung das Ergebnis der Temperaturabhängigkeit der Keimbildung und des Fortschreitens der Siliciumcarbidabscheidung ist.


Presented at VIth International Symposium on Microtechniques, Graz, 7–11 September 1970.  相似文献   

17.
本文综述了溶剂热法制备一系列碳化硅纳米材料的研究,包括一维纳米线、纳米带、纳米棒、二维纳米片及空心球等;同时,碳源过量时可形成碳包覆碳化硅的复合材料。使用废塑料作为碳源合成了碳化硅纳米材料,为废塑料的回收再利用提供了新途径。通过使用碘、硫等添加剂,有效降低了合成温度,显示出溶剂热技术在制备碳化硅方面的独特优势。  相似文献   

18.
The dielectrophoretic assembly of silicon carbide (SiC) nanowires in a microfluidic flow is shown to enhance the orientation and deposition yield of nanowires. The fluid flow delivers and orients the nanowires in the vicinity of a gap, and they are attracted and deposited by a dielectrophoretic force. Depending upon their lengths, the nanowires are selectively attracted to the gap because the dielectrophoretic force is largest when the lengths are comparable to the gap size. Precise control over the fluid flow and dielectrophoresis shows various interesting phenomena such as landing, shifting, and uniform spacing of nanowires during the assembly process. As a result, the precise control enables the selective positioning of nanowires only at the gap where the fluid direction is consistent with the electric field orientation.  相似文献   

19.
With a view to understand the diffusion of radionuclides through the silicon carbide layers in tristructural isotropic coated fuel particles, density functional theory calculations are applied to assess the interaction of palladium, silver, tin, and caesium with silicon carbide. The silicon carbide molecule (Si2C2), crystalline cubic silicon carbide (β‐SiC), and the (120) ∑5 grain boundary of β‐SiC are investigated to elucidate the differences in the interactions of silicon carbide with these elements. The main stabilizing forces in the PdSi2C2 complex were found to be donor‐acceptor charge transfer (covalent) interactions, the Ag and Sn complexes involve significant contributions from both electrostatic and covalent interactions, while the Cs atom is bonded dominantly by electrostatic forces. For the unconstrained M? Si2C2 model, the following energetic ordering was obtained: Pd > Sn > Cs > Ag. The steric constraints in the bulk SiC and on the grain boundary change the order of binding energies to Pd > Ag > Sn > Cs in the interstitials and Pd > Sn > Ag > Cs in vacancies and at the grain boundary. By comparing the incorporation energies in the solid phases, it is possible to group these elements by similarities in the patterns of incorporation energies. Silver and palladium form a group with carbon, tin is grouped with silicon, and caesium is on its own. © 2014 European Commission. International Journal of Quantum Chemistry published by Wiley Periodicals, Inc.  相似文献   

20.
本文综述了溶剂热法制备一系列碳化硅纳米材料的研究,包括一维纳米线、纳米带、纳米棒、二维纳米片及空心球等;同时,碳源过量时可形成碳包覆碳化硅的复合材料。使用废塑料作为碳源合成了碳化硅纳米材料,为废塑料的回收再利用提供了新途径。通过使用碘、硫等添加剂,有效降低了合成温度,显示出溶剂热技术在制备碳化硅方面的独特优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号