首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of alkylpyridinium (CnH2n + 1NC5H5, hereafter Cn-Py) iodide salts in aqueous acetonitrile with a preformed palladium iodide precursor afforded two different types of organic-inorganic phases depending on the molar ratio. A 2:1 ratio yielded the phase [Cn-Py]2[PdI4] (3, n = 14, 16), which crystallized in the triclinic crystal system. The X-ray crystal structure of 3, (n = 14), refined in the space group P1 (a = 8.918(3) A, b = 9.894(3) A, c = 29.062(12) A, alpha = 93.51(3) degrees, beta = 94.17(3) degrees, gamma = 115.60(3) degrees, and Z = 2), consists of interdigitated bilayers with a basal spacing of 29.0 A. The aliphatic chains of the cations, which run almost parallel to the stacking direction, are fully stretched between polar planes built on isolated [PdI4]2- anions and cation headgroups. Changing the organic cation to palladium ratio to 1:1 led to a new phase [Cn-Py]2[Pd2I6] (4, n = 14, 16), which crystallizes in the triclinic P1 space group (a = 9.399(4) A, b = 14.264(6) A, c = 29.415(13) A, alpha = 92.11(4) degrees, beta = 90.07(4) degrees, gamma = 104.53(3) degrees, Z = 3 for 4(n = 14); a = 9.417(2) A, b = 14.215(3) A, c = 31.552(6) A, alpha = 87.96(3) degrees, beta = 87.63(3) degrees, gamma = 75.67(3) degrees, Z = 3 for 4(n = 16)). The layered structure is basically of a continuously interdigitated single-layer type, with a bilayer sublattice superimposed. Isolated [Pd2I6]2- anions contribute to the inorganic planes. A high degree of interdigitation and tilting of the aliphatic chains lead to basal spacings of 29.4 and 31.5 A for 4(n = 14) and 4(n = 16), respectively. The [Cn-Py]2[PdI4] and [Cn-Py]2[Pd2I6] phases were characterized by thermal analysis. Mesomorphic behavior was observed only for 3(n = 16), which was confirmed by variable-temperature powder XRD and optical microscopy.  相似文献   

2.
The synthesis and structural characterization of the first [1.1]chromarenophanes and the first [1.1]molybdarenophanes are described. A salt-metathesis reaction of [2-(Me 2NCH 2)C 6H 4]AlCl 2 with freshly prepared [Cr(LiC 6H 5) 2].TMEDA (TMEDA = N, N, N', N'-tetramethylethylenediamine) resulted in the dialumina[1.1]chromarenophane [{2-(Me 2NCH 2)C 6H 4}Al(eta (6)-C 6H 5) 2Cr] 2 ( 2a). The poor solubility of 2a in organic solvents prompted us to synthesize the new intramolecularly coordinated aluminum- and gallium dichlorides [5- tBu-2-(Me 2NCH 2)C 6H 3]ECl 2 [E = Al ( 3a), Ga ( 3b)] in which the phenyl group was equipped with a tert-butyl group. Salt-metathesis reactions of 3a and 3b, respectively, with freshly prepared [M(LiC 6H 5) 2].TMEDA (M = Cr, Mo) resulted in four new [1.1]metallarenophanes of the general type [{5- tBu-2-(Me 2NCH 2)C 6H 3}E(eta (6)-C 6H 5) 2M] 2 [E = Al, M = Cr ( 4a); E = Ga, M = Cr ( 4b); E = Al, M = Mo ( 5a); E = Ga, M = Mo ( 5b)]. 2a, 4a, b, and 5a, b have been structurally characterized by single-crystal analysis [ 2a.1/2C 6H 12: C 48H 56Al 2Cr 2N 2, monoclinic, P2 1/ c, a = 9.9117(9) A, b = 19.9361(16) A, c = 10.638(2) A, alpha = 90 degrees , beta = 112.322(5) degrees , gamma = 90 degrees , Z = 2; 4a.2C 6H 6: C 62H 72Al 2Cr 2N 2, monoclinic, P2 1/ c, a = 10.9626(9) A, b = 19.3350(18) A, c = 12.4626(9) A, alpha = 90 degrees , beta = 100.756(5) degrees , gamma = 90 degrees , Z = 2; 4b.2C 6H 6: C 62H 72Cr 2Ga 2N 2, monoclinic, P2 1/ c, a = 10.8428(2) A, b = 19.4844(4) A, c = 12.4958(2) A, alpha = 90 degrees , beta = 100.6187 degrees , gamma = 90 degrees , Z = 2; 5a.2C 6H 6: C 62H 72Al 2Mo 2N 2, triclinic, P1, a = 10.4377(4) A, b = 11.6510(4) A, c = 11.6514(4) A, alpha = 73.545(3) degrees , beta = 89.318(2) degrees , gamma = 76.120(2) degrees , Z = 1; 5b.2C 6H 6: C 62H 72Ga 2Mo 2N 2, triclinic, P1, a = 10.3451(5) A, b = 11.6752(6) A, c = 11.6900(5) A, alpha = 73.917(3) degrees , beta = 89.550(3) degrees , gamma = 76.774(2) degrees , Z = 1]. All five [1.1]metallarenophanes 2a, 4a, b, and 5a, b crystallize as anti isomers with both Me 2N donor groups in exo positions ( C i point group symmetry). The new [1.1]metallarenophanes show NMR spectra that can be interpreted as being caused by time-averaged C 2 h symmetrical species, which is consistent with the findings of their molecular structures in the solid state. Variable-temperature (1)H NMR measurements for 4a, b and 5a, b (500 MHz; -90 to 90 degrees C) revealed only peak broadening in the lower temperature range of -70 to -90 degrees C. (1)H NMR saturation transfer difference experiments did not show an expected anti-to-anti isomerization, rendering the new [1.1]metallacyclophanes rigid on the NMR time scale. Electrochemical measurements were performed for 4a, b and 5a, b. However, reproducible cyclic voltammograms could only be obtained for the two gallium species 4b and 5b, revealing the expected weak communication between the two transition-metal atoms in both compounds (class II).  相似文献   

3.
A new type of hexaosmium boride cluster, H3Os6(CO)16B, was produced in the thermolysis of H3Os3(CO)9(BCO). This complex is an 86 valence electron cluster, but the Os6 framework does not possess one of the geometries previously observed for Os6 clusters that have 86 valence electrons. [HOs6(CO)18]- and [Os6(CO)18]2- have octahedral frameworks while that of H2Os6(CO)18 is a face-capped square pyramid. The Os6 framework of H3Os6(CO)16B can be viewed as being derived from a pentagonal bipyramid that is missing one equatorial vertex. It contains an interior boron atom. Alternatively, it can be viewed like the 84 valence cluster Os6(CO)18 as either a bicapped tetrahedron, with a boron atom residing on the edge of the tetrahedron that is common to the capped faces, or a face-capped trigonal bipyramid, with the boron atom on an equatorial edge of the bipyramid that is also an edge of the capped face. H3Os6(CO)16B was characterized by 1H, and 11B, 13C NMR, IR, and mass spectroscopies and single-crystal X-ray diffraction analysis. The molecular structure was determined from two separate crystals. The analysis of each crystal yielded virtually identical structures, but their volumes differed by 36 A3 due to differences in packing in the unit cell. Data for crystal I of H3Os6(CO)16B: monoclinic P2(1/n), a = 9.954(2) A, b = 15.780(4) A, c = 16.448(3) A, beta = 91.07(1) degrees, Z = 4. Data for crystal II of H3Os6(CO)16B: monoclinic P2(1/n), a = 9.927(2) A, beta = 16.623(2) A, b = 16.0233(10) A, beta = 97.78(1) degrees, Z = 4.  相似文献   

4.
Yan Z  Day CS  Lachgar A 《Inorganic chemistry》2005,44(13):4499-4505
Three novel coordination polymers built of octahedral niobium cyanochloride clusters [Nb6Cl12(CN)6] and alkaline earth metal complexes have been prepared by reaction of aqueous solutions of (Me4N)4Nb6Cl18 and KCN with solutions of alkaline earth metal salts and 1,10-phenanthroline (phen) (1:2 molar ratio) in H2O/EtOH. The structures of [Ca(phen)2(H2O)3]2[Nb6Cl12(CN)6] x (phen)(EtOH)1.6 (1), [Ca(phen)2(H2O)2]2[Nb6Cl12(CN)6] x (phen)2 x 4H2O (2), and [Ba(phen)2(H2O)]2[Nb6Cl12(CN)6] (3) were determined by single-crystal X-ray diffraction. The three compounds were found to crystallize in the monoclinic system (space group Pn) with a = 11.5499(6) A, b = 17.5305(8) A, c = 21.784(1) A, beta = 100.877(1) degrees for 1; triclinic system (P1) with a = 12.609(4) A, b = 13.262(4) A, c = 16.645(5) A, alpha = 69.933(6) degrees, beta = 68.607(6) degrees, gamma = 63.522(5) degrees for 2; and a = 16.057(1) A, b = 16.063(1) A, c = 16.061(1) A, alpha = 86.830(1) degrees, beta = 64.380(1) degrees, gamma = 67.803(1) degrees for 3. Compounds 1 and 2 are built of cluster anions [Nb6Cl12(CN)6]4- trans-coordinated by two Ca2+ complexes via CN ligands to form neutral macromolecular units [Ca(phen)2(H2O)3]2[Nb6Cl12(CN)6] in 1 and [Ca(phen)2(H2O)2]2[Nb6Cl12(CN)6] in 2. Water of coordination and cyanide ligands form hydrogen bonded 3D and 2D frameworks for 1 and 2, respectively. The structure of 3 consists of [Nb6Cl12(CN)6]4- cluster anions and [Ba(phen)2(H2O)]2+ complexes linked through bridging cyanide ligands to form a neutral three-dimensional framework in which each barium complex is bound to three neighboring Nb6 clusters and each Nb6 cluster is linked to six Ba complexes.  相似文献   

5.
Syntheses and characterizations of a Pd-based molecular triangle and square and hybrid composites with polyoxometalates are examined. The equilibrium between the Pd-based molecular triangle [(en*)Pd(4,4'-bpy)]3(NO3)6 and square [(en*)Pd(4,4'-bpy)]4(NO3)8 largely depends on the solvents, and both compounds have successfully been isolated: [(en*)Pd(4,4'-bpy)]3(NO3)6.3.5DMSO, monoclinic Cc (No. 9), a = 19.8210(2) A, b = 34.3667(5) A, c = 27.5484(4) A, beta = 89.9420(10) degrees , V = 18765.5(4) A3; [(en*)Pd(4,4'-bpy)]4(NO3)8, monoclinic C2/c (No. 15), a = 45.6921(16) A, b = 8.7721(8) A, c = 36.719(3) A, beta = 126.509(2) degrees , V = 11829.4(14) A3. The reactions of the Pd-based molecular triangle/square with [W6O19]2-, [W10O32]4-, and [alpha-SiW12O40]4- form [[(en*)Pd(4,4'-bpy)]4[ supersetW6O19]][W6O19]3, [[(en*)Pd(4,4'-bpy)]4[ supersetW6O19]](NO3)6, [[(en*)Pd(4,4'-bpy)]4[ supersetW10O32]][W10O32], [(en*)Pd(4,4'-bpy)]4[W10O32]2, and [(en*)Pd(4,4'-bpy)]4[alpha-SiW12O40]2. The molecular square does not encapsulate the largest [alpha-SiW12O40]4-, but it does encapsulate [W6O19]2- and [W10O32]4-. The isolation of [W6O19]2- and [alpha-SiW12O40]4- from the mixture by use of the molecular square is possible by utilizing the quite different solubility of [[(en*)Pd(4,4'-bpy)]4[ supersetW6O19]](NO3)6 and [(en*)Pd(4,4'-bpy)]4[alpha-SiW12O40]2 formed in DMSO. The size-selective encapsulation property of supramolecules may open the new way to rationalize isolation methods of the useful polyoxometalates.  相似文献   

6.
Two new three-dimensional open-framework cobalt phosphates, [C2N2H10]2[Co4(PO4)4]H2O, I, and [C4N3H16]3-[Co6(PO4)5(HPO4)3]H2O, II, have been prepared by the reaction of amine phosphates with Co2+ salts. I could also be prepared by the reaction of the cobalt tris amine complex with H3PO4. The crystal data for I and II are as follows: phosphate I, orthorhombic, space group P2(1)2(1)2(1) (no. 19), a = 10.277 (1) A, b = 10.302 (1) A, c = 18.836 (1) A, V = 1994.2 (2) A3, Z = 4; phosphate II, monoclinic, space group P2(1)/c (No. 14), a = 31.950 (1) A, b = 8.360 (1) A, c = 15.920 (1) A, beta = 96.6 (1) degrees V = 4223.4 (2) A3, Z = 4. The structures of both I and II are constructed from alternating CoO4 and PO4 tetrahedra. The connectivity leads to the formation of eight-membered channels in all the crystallographic directions resembling the aluminosilicate zeolite, merlinoite in the case of I and to a rather large, one-dimensional 16-membered channel in II. Strong hydrogen-bond interactions involving the amine and framework oxygen are present in both I and II.  相似文献   

7.
The alkali dicyanamides M[N(CN)2] (M=K, Rb) were synthesized through ion exchange, and the corresponding tricyanomelaminates M3[C6N9] were obtained by heating the respective dicyanamides. The thermal behavior of the dicyanamides and their reaction to form the tricyanomelaminates were investigated by temperature-dependent X-ray powder diffractometry and thermoanalytical measurements. Potassium dicyanamide K[N(CN)2] was found to undergo four phase transitions: At 136 degrees C the low-temperature modification alpha-K[N(CN)2] transforms to beta-K[N(CN)2], and at 187degrees C the latter transforms to the high-temperature modification gamma-K[N(CN)2], which melts at 232 degrees C. Above 310 degrees C the dicyanamide ions [N(CN)2]- trimerize and the resulting tricyanomelaminate K3[C6N9] solidifies. Two modifications of rubidium dicyanamide have been identified: Even at -25 degrees C, the a form slowly transforms to beta-Rb[N(CN)2] within weeks. Rb[N(CN)2] has a melting point of 190 degrees C. Above 260 degrees C the dicyanamide ions [N(CN)2]- of the rubidium salt trimerize in the melt and the tricyanomelaminate Rb3[C6N9] solidifies. The crystal structures of all phases were determined by powder diffraction methods and were refined by the Rietveld method. alpha-K[N(CN)2] (Pbcm, a = 836.52(1), b = 46.90(1), c =7 21.27(1) pm, Z = 4), gamma-K[N(CN)2] (Pnma, a = 855.40(3), b = 387.80(1), 1252.73(4) pm, Z = 4), and Rb[N(CN)2] (C2/c, a = 1381.56(2), b = 1000.02(1), c = 1443.28(2) pm, 116.8963(6) degrees, Z = 16) represent new structure types. The crystal structure of beta-K[N(CN)2] (P2(1/n), a = -726.92(1), b 1596.34(2), c = 387.037(5) pm, 111.8782(6) degrees, Z = 4) is similar but not isotypic to the structure of alpha Na[N(CN)2]. alpha-Rb[N(CN)2] (Pbcm, a = 856.09(1), b = 661.711(7), c = 765.067(9) pm, Z = 4) is isotypic with alpha-K[N(CN)2]. The alkali dicyanamides contain the bent planar anion [N(CN)2]- of approximate symmetry C2, (average bond lengths: C-N(bridge) 133, C-N(term) 113 pm; average angles N-C-N 170 degrees, C-N-C 120 degrees). K3[C6N9] (P2(1/c), a = 373.82(1), b = 1192.48(5), c = 2500.4(1) pm, beta = 101.406(3) degrees, Z = 4) and Rb,[C6N9] (P2(1/c), a = 389.93(2), b = 1226.06(6), c = 2547.5(1) pm, 98.741(5) degrees, Z=4) are isotypic and they contain the planar cyclic anion [C6N9]3-. Although structurally related, Na3[C6N9] is not isotypic with the tricyanomelaminates M3[C6N9] (M = K, Rb).  相似文献   

8.
A new dinuclear copper(Ⅱ) complex with imino nitroxide radicals [Cu2(NO3)2(IM-1'-MeBzlm)2(dca)2] (IM-1'-MeBzlm = 2-{2'-[(1'-methyl)benzimidazolyl]}-4,4,5,5-tetramethylimi-dazoline-1-oxyl, dca = dicyanamide anion) has been prepared and structurally characterized by single-crystal X-ray diffraction. The complex crystallizes in triclinie, space group P1, with a =9.440(5), b = 10.124(6), c = 11.603(7)(A°), α= 102.904(7),β = 94.033(6), γ= 104.299(7)°,C34H40Cu2N16O8, Mr= 927.90, V= 1038.2(10) (A°)3, Z = 1, Dc=1.484 g/cm3,μ(MoKα) = 1.093 mm-1,F(000) = 478, R = 0.0609 and wR = 0.1512 for 2889 observed reflections with I > 2σ(I). X-ray analysis reveals that two Cu(Ⅱ) atoms are bridged by two dicyanamides to form a centrosymmetric Cu(Ⅱ)-Cu(Ⅱ) dinuclear entity. Every Cu(Ⅱ) ion is five-coordinated with a distorted square pyramidal coordination geometry and IM-1'-MeBzlm ligand coordinates to the metal ion with the κ2 N(1'-MeBzlm), O(IM) mode to avoid steric hindrance with the methyl group in the complex. Meanwhile, the molecules are linked by intermolecular hydrogen bonds, leading to a 1-D chain structure. Moreover, such chains are further linked by π-π stacking interactions to form a 2-D network structure. Magnetic measurement demonstrates that the intramolecular exchange couplings between Cu(Ⅱ) ion and the IM-1'-MeBzlm are ferromagnetic with J = 12.46 cm-1, where the spin Hamitonian is defined as H= -2JS1S2 within the complex.  相似文献   

9.
Five new open-framework zinc phosphates, encompassing the entire hierarchy of open-framework structures, have been synthesized hydrothermally in the presence of triethylenetetramine. The structures include one-dimensional ladders, two-dimensional layers, and three-dimensional structures as well as a zinc phosphate where the amine acts as a ligand. [C6N4H22]0.5[Zn(HPO4)2] (I): monoclinic, space group P2(1)/c (no. 14), a = 5.2677(1) A, b = 13.3025(1) A, c = 14.7833(1) A, beta = 96.049 degrees, Z = 4. [C6N4H22]0.5[Zn2(HPO4)3] (II): triclinic, space group P1 (no. 2), a = 7.515(1) A, b = 8.2553(1) A, c = 12.911(1) A, alpha = 98.654(1) degrees, beta = 101.274(1) degrees, gamma = 115.791(1) degrees, Z = 2. [C6N4H22]0.5[Zn2P2O8] (III): triclinic, space group P1 (no. 2), a = 8.064(1) A, b = 8.457(1) A, c = 9.023(1) A, alpha = 111.9(1) degrees, beta = 108.0(1) degrees, gamma = 103.6(1) degrees, Z = 2. [C6N4H22]0.5[Zn3(PO4)2(HPO4)] (IV): triclinic, space group P1 (no. 2), a = 5.218(1) A, b = 8.780(1) A, c = 16.081(1) A, alpha = 89.3(1) degrees, beta = 83.5(1) degrees, gamma = 74.3(1) degrees, Z = 2. [C6N4H20]0.5[Zn4P4O16] (V): monoclinic, space group P2(1)/c (no. 14), a = 9.219(1) A, b = 15.239(1) A, c = 10.227(1) A, beta = 105.2(1), Z = 4. The structure of I is composed of ZnO4 and HPO4 tetrahedra, which are edge-shared to form four-membered rings, which, in turn, form a one-dimensional chain (ladder). In II, these ladders are fused into a layer. The structures of III and IV comprise networks of ZnO4 and PO4 tetrahedra forming three-dimensional architectures. In V, the amine molecule coordinates to the Zn and acts as a pillar supporting the zinc phosphate layers, which possess infinite Zn-O-Zn linkages. The 16-membered one-dimensional channel in IV and the ZnO3N pillar, along with infinite Zn-O-Zn linkages in V, are novel features. The structure of the open-framework zinc phosphates is found to depend sensitively on the relative concentrations of the amine and phosphoric acid, with high concentrations of the latter favoring structures with lower dimensions.  相似文献   

10.
A new dinuclear copper(Ⅱ) complex with imino nitroxide radicals [Cu2(NO3)2(IM-1′-MeBzIm)2(dca)2] (IM-1′-MeBzIm = 2-{2′-[(l′-methyl)benzimidazolyl]}-4,4,5,5-tetramethylimi-dazoline-1-oxyl, dca = dicyanamide anion) has been prepared and structurally characterized by single-crystal X-ray diffraction. The complex crystallizes in triclinic, space group P1, with a = 9.440(5), b = 10.124(6), c = 11.603(7), α = 102.904(7), β = 94.033(6), γ = 104.299(7)°, C34H40Cu2N16O8, Mr = 927.90, V = 1038.2(10) 3, Z = 1, Dc = 1.484 g/cm3, μ(MoKα) = 1.093 mm-1, F(000) = 478, R = 0.0609 and wR = 0.1512 for 2889 observed reflections with I > 2σ(I). X-ray analysis reveals that two Cu(Ⅱ) atoms are bridged by two dicyanamides to form a centrosymmetric Cu(Ⅱ)-Cu(Ⅱ) dinuclear entity. Every Cu(Ⅱ) ion is five-coordinated with a distorted square pyramidal coordination geometry and IM-1′-MeBzIm ligand coordinates to the metal ion with the κ2 N(1′-MeBzIm), O(IM) mode to avoid steric hindrance with the methyl group in the complex. Meanwhile, the molecules are linked by intermolecular hydrogen bonds, leading to a 1-D chain structure. Moreover, such chains are further linked by π-π stacking interactions to form a 2-D network structure. Magnetic measurement demonstrates that the intramolecular exchange couplings between Cu(Ⅱ) ion and the IM-1′-MeBzIm are ferromagnetic with J = 12.46 cm-1, where the spin Hamitonian is defined as■ = -2J12 within the complex.  相似文献   

11.
The first imidazole-type carbene complex of platinum(II), cis-(C2H4)(1-ethyl-3-methylimidazol-2-ylidene)PtCl2, has been obtained by reacting PtCl2 and PtCl4 with ethylene in the basic [EMIM]Cl/AlCl3 (1.3:1) ionic liquid (where [EMIM]+ = 1-ethyl-3-methylimidazolium) at 200 degrees C and structurally characterized (monoclinic P21/c space group, a = 10.416(2) A, b = 7.3421(9) A, c = 15.613(2) A, beta = 101.53(2) degrees, Z = 4). This complex can be regarded as a stable analogue of the pi-alkene-Pd(II)-carbene intermediate in the Heck reaction. In addition, a series of new N,N'-dialkylimidazolium salts of platinum group metals of the type [RMIM]2[MCln], where [RMIM+] = 1-alkyl-3-methylimidazolium and M = Pt(II), Pt(IV), or Ir(IV), have been prepared and characterized. The salts [EMIM]2[PtCl6] (1) and [EMIM]2[PtCl4] (2) were prepared in the ionic liquid [EMIM]Cl/AlCl3 and the salts [BMIM]2[PtCl4] (3) and [BMIM]2[PtCl6] (4) (where [BMIM]+ = 1-n-butyl-3-methylimidazolium) and [EMIM]2-[IrCl6] (5) in aqueous or acetonitrile media. From TGA measurements, salts 1-5 decompose in air in several steps eventually to form the corresponding metal, the onset of decomposition being observed at (degree C) 260 (1), 220 (2), 200 (3), 215 (4), and 210 (5). The structures of 1, 2, and 5 were determined by single-crystal X-ray analysis. The three salts crystallize in the monoclinic P21/n space group (1, a = 7.6433(9) A, b = 16.353(2) A, c = 9.213(1) A, beta = 113.56(1) degrees, Z = 2; 2, a = 8.601(1) A, b = 8.095(2) A, c = 13.977(2) A, beta = 91.75(2) degrees, Z = 2; 5, a = 10.353(2) A, b = 9.759(2) A, c = 10.371(2) A, beta = 92.98(3) degrees, Z = 2).  相似文献   

12.
A new layered transition metal oxohalide, FeTe2O5ClxBr1-x, has been identified. It crystallizes in the monoclinic space group P21/c. The unit cell for FeTe2O5Br is a = 13.3964(8), b = 6.5966(4), c = 14.2897(6) A, beta=108.118(6) degrees, and Z=8. The layers are built of edge sharing [FeO6] octahedra forming [Fe4O16]20- units that are linked by [Te4O10X2]6- groups. The layers have no net charge and are only weakly connected via van der Waals forces to adjacent layers. There are four crystallographically different Te atoms, and one of them displays a unique [TeO2X] coordination polyhedron (X=Cl, Br). Magnetic susceptibility measurements show a broad maximum typical for 4-spin clusters of coupled Fe(III) ions in the high-spin state. Evidence for magnetic instabilities exists at low temperatures, which have been confirmed with specific heat experiments. A theoretical modeling of the susceptibility concludes a frustration of the intra-tetramer anti-ferromagnetic exchange interaction.  相似文献   

13.
Yan B  Maggard PA 《Inorganic chemistry》2006,45(12):4721-4727
The layered molybdate [M2(pzc)2(H2O)x][Mo5O16] (I: M = Ni, x = 5.0; II: M = Co, x = 4.0; pzc = pyrazinecarboxylate) hybrid solids were synthesized via hydrothermal reactions at 160-165 degrees C. The structures were determined by single-crystal X-ray diffraction data for I (Cc, Z = 4; a = 33.217(4) A, b = 5.6416(8) A, c = 13.982(2) A, beta = 99.407(8) degrees , and V = 2585.0(6) A3) and powder X-ray diffraction data for II (C2/c, Z = 4; a = 35.42(6) A, b = 5.697(9) A, c = 14.28(2) A, beta = 114.95(4) degrees , and V = 2614(12) A3). The polar structure of I contains new [Ni2(pzc)2(H2O)5]2+ double layers that form an asymmetric pattern of hydrogen bonds and covalent bonds to stair-stepped [Mo5O16]2- sheets, inducing a net dipole moment in the latter. In II, however, the [Co2(pzc)2(H2O)4]2+ double layers have one less coordinated water and subsequently exhibit a symmetric pattern of covalent and hydrogen bonding to the [Mo5O16]2- sheets, leading to a centrosymmetric structure. Thermogravimetric analyses and powder X-ray diffraction data reveal that I can be dehydrated and rehydrated with from 0 to 6.5 water molecules per formula unit, which is coupled with a corresponding contraction/expansion of the interlayer distances. Also, the dehydrated form of I can be intercalated by approximately 4.3 H2S molecules per formula unit, but the intercalation by pyridine or methanol is limited to less than one molecule per formula unit.  相似文献   

14.
Bi LH  Wang EB  Peng J  Huang RD  Xu L  Hu CW 《Inorganic chemistry》2000,39(4):671-679
Six new heteropoly compounds in the [M4(H2O)2(As2W15O56)2]16- series (M = CuII, MnII, CoII, NiII, ZnII, CdII), previously unknown, were synthesized and characterized by means of IR, UV-vis, CV, 183W NMR, TG-DSC, and elemental analyses. The synthetic method used in preparing this type of heteropoly compounds was different from that in preparing the corresponding tungstophosphates in that the starting materials were transition metal chlorides in 1.5 times the stoichiometric amount and the required pH value is lower than 2. The crystal structure of Na16[Cu4(H2O)2(As2W15O56)2].47H2O was solved in triclinic, P1 symmetry, with a = 12.721(3) A, b = 24.516(5) A, c = 26.450(5) A, alpha = 89.90(3) degrees, beta = 77.32(3) degrees, gamma = 89.96(3)degrees, V = 8048(3) A3, Z = 2, and R = 0.0966. This anion is isostructural with the previously reported [Cu4(H2O)2(P2W15O56)2]16-, having a rhombic tetrameric cluster Cu4O16 sandwiched by two trivacant Dawson-Wells anions [As2W15O56]12-. The range of the bond lengths of the equatorial Cu-O bonds is 1.83-2.05 A, while that of the axial Cu-O bonds is 2.30-2.39 A. The distortion of the Cu4O16 cluster is smaller in the As species than in the P species. Two copper atoms in the Cu4O16 cluster are coordinated by water molecules. The replacement reactions of the coordinated water molecules of this series of heteropoly compounds in aqueous solutions and in selected organic solvents are also reported here for the first time. The results show that [Fe(CN)6]4-, [Fe(CN)6]3-, H2NCH2CH2NH2, etc., can replace the coordinated water to form its characteristic color in aqueous solutions, while in organic solvents the coordinated water molecules are lost, leaving unshared coordination positions that can be occupied by some organic ligands such as pyridine, lactic acid, and acetone to restore the octahedral coordination of M2+. The crystallographic morphologies of this series of heteropolyanions after phase transfer are dependent on different transition metal ions present in the central M4O16 clusters although the anions are isostructural with each other.  相似文献   

15.
An H  Li Y  Wang E  Xiao D  Sun C  Xu L 《Inorganic chemistry》2005,44(17):6062-6070
Three unusual compounds based on polyoxometalate building blocks, [(H2O)5Na2(C6NO2H4)(C6NO2H5)3Ag2][Ag2IMo6O24(H2O)4] x 6.25H2O (1), [(H2O)4Na2(C6NO2H5)6Ag3][IMo6O24] x 6H2O (2), and (C6NO2H6)2[(C6NO2H5)2Ag][Cr(OH)6Mo6O18] x 4H2O (3), have been synthesized and characterized by elemental analysis; IR, XPS, and ESR spectroscopy; TG analysis; and single-crystal X-ray diffraction. Compound 1 is constructed from the cationic two-dimensional (2D) coordination polymer sheets which are constituted of [(H2O)5Na2(C6NO2H4)(C6NO2H5)3Ag2]3+ and anionic [Ag2IMo6O24(H2O)4]3- chains as pillars, forming a three-dimensional (3D) supramolecular framework via weak Ag-O interactions. Compound 2 is composed of the well-defined [IMo6O24]5- building blocks, which are linked through trinuclear Ag-pyridine-3-carboxylic acid, [(C6NO2H5)6Ag3]3+, fragments into a one-dimensional (1D) hybrid chain; adjacent chains are further connected by sodium cations to yield a novel 2D network. Compound 3 has a 1D chainlike structure constructed from [Cr(OH)6Mo6O18]3- building blocks and Ag-pyridine-4-carboxylic acid coordination units. The crystal data for these compounds are the following: 1, triclinic, P1, a = 13.280(3) A, b = 13.641(3) A, c = 16.356(3) A, alpha = 89.68(3) degrees, beta = 88.31(3) degrees, gamma = 75.87(3) degrees, Z = 2; 2, triclinic, P1, a = 11.978(2) A, b = 12.008(2) A, c = 13.607(3) A, alpha = 116.14(3) degrees, beta = 108.85(3) degrees, gamma = 93.86(3) degrees, Z = 1; 3, triclinic, P1, a = 10.458(2) A, b = 10.644(2) A, c = 12.295(3) A, alpha = 97.40(3) degrees, beta = 112.38(3) degrees, gamma = 113.59(3) degrees, Z = 1.  相似文献   

16.
Wang XY  Sevov SC 《Inorganic chemistry》2008,47(3):1037-1043
Three hybrid organic-inorganic coordination polymers with benzenepentacarboxylate (BPCA) linkers, [Co3(C6H(COO)5)(OH)(H2O)3] (1-Co), [Zn3(C6H(COO)5)(OH)(H2O)3] (2-Zn), and [Co5(C6H(COO)5)2(H2O)12].(H2O)12 (3-Co), were synthesized hydrothermally and were characterized structurally and magnetically. 1-Co and 2-Zn are isostructural [C2/c; Z=8; 1-Co, a=19.5350(6) A, b=10.4494(4) A, and c=13.2353(5) A, beta=97.2768(8) degrees; 2-Zn, a=19.5418(9) A, b=10.3220(10) A, and c=13.4660(10) A, beta=98.455(10) degrees] with three-dimensional structures that contain [M6] secondary building units bridged by BPCA ligands. A different cobalt-based compound, 3-Co, forms at lower pH and lower reaction temperature. Its structure [P21/c; Z=2; a=12.6162(2) A, b=11.3768(2) A, and c=15.3401(3) A, beta=91.539(1) degrees] is a more loosely packed framework with free (noncoordinated) carboxylic groups pointing at water-filled cavities in the framework. The magnetic phase diagram of 1-Co established through detailed magnetic measurements shows a metamagnetic transition below TN=3.8 K. The less-packed compound 3-Co, on the other hand, remains paramagnetic above 1.9 K. The three compounds are the first examples of coordination polymers with benzenepentacarboxylate linkers and fill the gap of coordination polymers involving benzenepolycarboxylate linkers of the general type C6H6-n(COOH)n, where n=2-6.  相似文献   

17.
The preparations of the new complexes [AsBr(3)[MeS(CH(2))(2)SMe]], [AsX(3)([9]aneS(3))] (X = Cl, Br or I; [9]aneS(3) = 1,4,7-trithiacyclononane), [AsCl(3)([14]aneS(4))] ([14]aneS(4) = 1,4,8,11-tetrathiacyclotetradecane), [AsX(3)([8]aneSe(2))] ([8]aneSe(2) = 1,5-diselenacyclooctane), [(AsX(3))(2)([16]aneSe(4))] ([16]aneSe(4) = 1,5,9,13-tetraselenacyclohexadecane), and [(AsBr(3))(2)([24]aneSe(6))] ([24]aneSe(6) = 1,5,9,13,17,21-hexaselenacyclotetracosane) are described. These are obtained from direct reaction of the appropriate AsX(3) and 1 mol equiv of the thio- or selenoether ligand in anhydrous CH(2)Cl(2) (or thf for X = I) solution. The products have been characterized by microanalysis and IR and (1)H NMR spectroscopy. In solution they are extensively dissociated, reflecting the weak Lewis acidity of AsX(3). Reaction of AsX(3) with MeSe(CH(2))(2)SeMe or MeC(CH(2)EMe)(3) (E = S or Se) gave only oils. Treatment of PCl(3) or PBr(3) with Me(2)S, MeE(CH(2))(2)EMe, or [9]aneS(3) failed to give solid complexes, and there was no evidence from NMR spectroscopy for any adduct formation in solution. The crystal structures of the first series of thioether and selenoether complexes of As(III) are described: [AsBr(3)[MeS(CH(2))(2)SMe]], C(4)H(10)AsBr(3)S(2), a = 10.2818(6) A, b = 7.8014(5) A, c = 14.503(1) A, beta = 102.9330(2) degrees, monoclinic, P2(1)/c, Z = 4; [AsI(3)[MeS(CH(2))(2)SMe]], C(4)H(10)AsI(3)S(2), a = 9.1528(1) A, b = 11.5622(2) A, c = 12.0939(2) A, beta = 93.863(1) degrees, monoclinic, P2(1)()/n, Z = 4; [AsCl(3)([9]aneS(3))], C(6)H(12)AsCl(3)S(3), a = 17.520(4) A, b = 17.520(4) A, c = 16.790(7) A, tetragonal, I4(1)cd, Z = 16; [AsCl(3)([14]aneS(4))], C(10)H(20)AsCl(3)S(4), a = 13.5942(2) A, b = 7.7007(1) A, c = 18.1270(3) A, beta = 111.1662(5) degrees, monoclinic, P2(1)()/n, Z = 4; [(AsCl(3))(2)([16]aneSe(4))], C(12)H(24)As(2)Cl(6)Se(4), a = 9.764(3) A, b = 13.164(1) A, c = 10.627(2) A, beta = 114.90(1) degrees, monoclinic, P2(1)()/n, Z = 2; [(AsBr(3))(2)([16]aneSe(4))], C(12)H(24)As(2)Br(6)Se(4), a = 10.1220(1) A, b = 13.4494(2) A, c = 10.5125(2) A, beta = 113.49(2) degrees, monoclinic, P2(1)()/n, Z = 2. [AsBr(3)[MeS(CH(2))(2)SMe]] and [AsI(3)[MeS(CH(2))(2)SMe]] reveal discrete mu(2)-halo As(2)X(6) dimeric structures involving distorted octahedral As(III), with the dithioether ligand chelating. [AsCl(3)([9]aneS(3))] adopts a discrete molecular distorted octahedral geometry with the thioether behaving as a weakly coordinated fac-capping ligand. [AsCl(3)([14]aneS(4))] forms an infinite sheet involving two mu(2)-chloro ligands on each As but bridging to two distinct As centers. Each macrocycle coordinates to two adjacent As centers via one S atom, giving a cis-octahedral Cl(4)S(2) donor set at As(III). The structures of [(AsCl(3))(2)([16]aneSe(4))] and [(AsBr(3))(2)([16]aneSe(4))] adopt 2-dimensional sheet structures with mu(2)-dihalo As(2)X(6) dimers cross-linked by mu(4)-tetraselenoether macrocycles, giving a disorted cis-X(4)Se(2) donor set at each As center. These species are compared with their antimony(III) and bismuth(III) analogues where appropriate.  相似文献   

18.
Hydrothermal reactions of the V2O5/2,2':6':2"-terpyridine/ZnO/H2O system under a variety of conditions yielded the organic-inorganic hybrid materials [V2O4(terpy)2]3[V10O28].2H2O (VOXI-10), [VO2(terpy)][V4O10] (VOXI-11), and [V9O22(terpy)3] (VOXI-12). The structure of VOXI-10 consists of discrete binuclear cations [V2O4(terpy)2]2+ and one-dimensional chains [V10O28]6-, constructed of cyclic [V4O12]4- clusters linked through (VO4) tetrahedra. In contrast, the structure of VOXI-11 exhibits discrete mononuclear cations [VO2(terpy)]1+ and a two-dimensional vanadium oxide network, [V4O10]1-. The structure of the oxide layer is constructed from ribbons of edge-sharing square pyramids; adjacent ribbons are connected through corner-sharing interactions into the two-dimensional architecture. VOXI-12 is also a network structure; however, in this case the terpy ligand is incorporated into the two-dimensional oxide network whose unique structure is constructed from cyclic [V6O18]6- clusters and linear (V3O5(terpy)3) moieties of corner-sharing vanadium octahedra. The rings form chains through corner-sharing linkages; adjacent chains are connected through the trinuclear units. Crystal data: VOXI-10, C90H70N18O42V16, triclinic P1, a = 12.2071(7) A, b = 13.8855(8) A, 16.9832(10) A, alpha = 69.584(1) degrees, beta = 71.204(1) degrees, gamma = 84.640(1) degrees, Z = 1; VOXI-11, C15H11N3O12V5, monoclinic, P2(1)/n, a = 7.7771(1) A, b = 10.3595(2) A, c = 25.715(4) A, beta = 92.286(1) degrees, Z = 4; VOXI-12, C45H33N9O22V9, monoclinic C2/c, a = 23.774(2) A, b = 9.4309(6) A, c = 25.380(2) A, beta = 112.047(1) degrees, Z = 4.  相似文献   

19.
Excision of the     
The synthesis of new molybdenum cluster selenocyanide anionic complexes [Mo6Se8(CN)6]7- and [Mo6Se8(CN)6]6- is reported. The [Mo6Se8(CN)6]7- ion was obtained by excision of the cluster core [Mo6Se8] from a Chevrel phase in the reaction of Mo6Se8 with KCN at 650 degrees C; the [Mo6Se8(CN)6]6- ion is formed by oxidation of [Mo6Se8(CN)6]7-. New cluster salts K7[Mo6Se8(CN)6] x 8H2O (1) and (Me4N)4K2[Mo6Se8(CN)6] x 10H2O (2) were isolated and their crystal structures were solved. Compound 1 crystallizes in the cubic space group Fm3m (a=15.552(2) A, Z=4, V=3761.5(8) A3), compound 2 crystallizes in the triclinic space group P1 (a=11.706(2), b=11.749(2), c=12.459(2) A, alpha=72.25(1), beta=77.51(1), gamma=63.04(1), Z=1, V=1448.5(4) A3). Compound 1 is paramagnetic due to an availability of 21 electrons per Mo6 cluster; cyclic voltammetry reveals a quasi-reversible transition [Mo6Se8(CN)6]7- <--> [Mo6Se8(CN)6]6-, E1/2=0.63 V.  相似文献   

20.
The reaction of the chelating ligand tBuNTe(mu-NtBu)2TeNtBu (L) with LiI in THF yields [Li(THF)2L](mu 3-I)[LiI(L)] (3). This complex is also formed by the attempted oxidation of [Li2Te(NtBu)3]2 with I2. An X-ray analysis of 3 reveals that the tellurium diimide dimer acts as a chelating ligand toward (a) [Li(THF)2]+ cations and (b) a molecule of LiI. An extended structure is formed via weak Te...I interactions [3.8296(7)-3.9632(7) A] involving both mu 3-iodide counterions and the iodine atoms of the coordinated LiI molecules. Crystal data: 3, triclinic, space group P1, a = 10.1233(9) A, b = 15.7234(14) A, c = 18.8962(17) A, alpha = 86.1567(16) degrees, beta = 84.3266(16) degrees, gamma = 82.9461(16) degrees, V = 2965.8(5) A3, Z = 2. The oxidation by air of [Li2Te(NtBu)3]2 in toluene produces the radical (Li3[Te(NtBu)3]2), which exhibits an ESR spectrum consisting of a septet of decuplets (g = 2.00506, a(14N) = 5.26 G, a(7Li) = 0.69 G). The complexes [(THF)3Li3(mu 3-X)(Te(NtBu)3)] (4a, X = Cl; 4b, X = Br; 4c, X = I) are obtained from the reaction of [Li2Te(NtBu)3]2 with lithium halides in THF. The iodide complex, 4c, has a highly distorted, cubic structure comprised of the pyramidal [Te(NtBu)3]2- dianion which is linked through three [Li(THF)]+ cations to I- Crystal data: 4c, triclinic, space group P1, a = 12.611(8) A, b = 16.295(6) A, c = 10.180(3) A, alpha = 98.35(3) degrees, beta = 107.37(4) degrees, gamma = 108.26(4) degrees, V = 1829(2) A3, Z = 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号