首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a combination of two techniques--QM/MM statistical simulation methods and QM/MM internal energy minimizations--to get a deeper insight into the reaction catalyzed by the enzyme chorismate mutase. Structures, internal energies and free energies, taken from the paths of the reaction in solution and in the enzyme have been analyzed in order to estimate the relative importance of the reorganization and preorganization effects. The results we obtain for this reaction are in good agreement with experiment and show that chorismate mutase achieves its catalytic efficiency in two ways; first, it preferentially binds the active conformer of the substrate and, second, it reduces the free energy of activation for the reaction relative to that in solution by providing an environment which stabilizes the transition state.  相似文献   

2.
A theoretical study of the hydride transfer between formate anion and nicotinamide adenine dinucleotide (NAD(+)) catalyzed by the enzyme formate dehydrogenase (FDH) has been carried out by a combination of two hybrid quantum mechanics/molecular mechanics techniques: statistical simulation methods and internal energy minimizations. Free energy profiles, obtained for the reaction in the enzyme active site and in solution, allow obtaining a comparative analysis of the behavior of both condensed media. Moreover, calculations of the reaction in aqueous media can be used to probe the dramatic differences between reactants state in the enzyme active site and in solution. The results suggest that the enzyme compresses the substrate and the cofactor into a conformation close to the transition structure by means of favorable interactions with the amino acid residues of the active site, thus facilitating the relative orientation of donor and acceptor atoms to favor the hydride transfer. Moreover, a permanent field created by the protein reduces the work required to reach the transition state (TS) with a concomitant polarization of the cofactor that would favor the hydride transfer. In contrast, in water the TS is destabilized with respect to the reactant species because the polarity of the solute diminishes as the reaction proceeds, and consequently the reaction field, which is created as a response to the change in the solute polarity, is also decreased. Therefore protein structure is responsible of both effects; substrate preorganization and TS stabilization thus diminishing the activation barrier. Because of the electrostatic features of the catalyzed reaction, both media preferentially stabilize the ground-state, thus explaining the small rate constant enhancement of this enzyme, but FDH does so to a much lower extent than aqueous solution. Finally, a good agreement between experimental and theoretical kinetic isotope effects is found, thus giving some credit to our results.  相似文献   

3.
Chorismate mutase is at the centre of current controversy about fundamental features of biological catalysts. Some recent studies have proposed that catalysis in this enzyme does not involve transition state (TS) stabilization but instead is due largely to the formation of a reactive conformation of the substrate. To understand the origins of catalysis, it is necessary to compare equivalent reactions in different environments. The pericyclic conversion of chorismate to prephenate catalysed by chorismate mutase also occurs (much more slowly) in aqueous solution. In this study we analyse the origins of catalysis by comparison of multiple quantum mechanics/molecular mechanics (QM/MM) reaction pathways at a reliable, well tested level of theory (B3LYP/6-31G(d)/CHARMM27) for the reaction (i) in Bacillus subtilis chorismate mutase (BsCM) and (ii) in aqueous solvent. The average calculated reaction (potential energy) barriers are 11.3 kcal mol(-1) in the enzyme and 17.4 kcal mol(-1) in water, both of which are in good agreement with experiment. Comparison of the two sets of reaction pathways shows that the reaction follows a slightly different reaction pathway in the enzyme than in it does in solution, because of a destabilization, or strain, of the substrate in the enzyme. The substrate strain energy within the enzyme remains constant throughout the reaction. There is no unique reactive conformation of the substrate common to both environments, and the transition state structures are also different in the enzyme and in water. Analysis of the barrier heights in each environment shows a clear correlation between TS stabilization and the barrier height. The average differential TS stabilization is 7.3 kcal mol(-1) in the enzyme. This is significantly higher than the small amount of TS stabilization in water (on average only 1.0 kcal mol(-1) relative to the substrate). The TS is stabilized mainly by electrostatic interactions with active site residues in the enzyme, with Arg90, Arg7 and Glu78 generally the most important. Conformational effects (e.g. strain of the substrate in the enzyme) do not contribute significantly to the lower barrier observed in the enzyme. The results show that catalysis is mainly due to better TS stabilization by the enzyme.  相似文献   

4.
In this work we present a detailed analysis of the activation free energies and averaged interactions for the Claisen and Cope rearrangements of chorismate and carbachorismate catalyzed by Bacillus subtilischorismate mutase (BsCM) using quantum mechanics/molecular mechanics (QM/MM) simulation methods. In gas phase, both reactions are described as concerted processes, with the activation free energy for carbachorismate being about 10-15 kcal mol(-)(1) larger than for chorismate, at the AM1 and B3LYP/6-31G levels. Aqueous solution and BsCM active site environments reduce the free energy barriers for both reactions, due to the fact that in these media the two carboxylate groups can be approached more easily than in the gas phase. The enzyme specifically reduces the activation free energy of the Claisen rearrangement about 3 kcal mol(-)(1) more than that for the Cope reaction. This result is due to a larger transition state stabilization associated to the formation of a hydrogen bond between Arg90 and the ether oxygen. When this oxygen atom is changed by a methylene group, the interaction is lost and Arg90 moves inside the active site establishing stronger interactions with one of the carboxylate groups. This fact yields a more intense rearrangement of the substrate structure. Comparing two reactions in the same enzyme, we have been able to obtain conclusions about the relative magnitude of the substrate preorganization and transition state stabilization effects. Transition state stabilization seems to be the dominant effect in this case.  相似文献   

5.
The rate enhancement provided by the chorismate mutase (CM) enzyme for the Claisen rearrangement of chorismate to prephenate has been investigated by application of the concept of near attack conformations (NACs). Using a combined QM/MM Monte Carlo/free-energy perturbation (MC/FEP) method, 82% and 100% of chorismate conformers were found to be NAC structures in water and in the CM active site, respectively. Consequently, the conversion of non-NACs to NACs does not contribute to the free energy of activation from preorganization of the substrate into NACs. The FEP calculations yielded differences in free energies of activation that well reproduce the experimental data. Additional calculations indicate that the rate enhancement by CM over the aqueous phase results primarily from conformational compression of NACs by the enzyme and that this process is enthalpically controlled. This suggests that preferential stabilization of the transition state in the enzyme environment relative to water plays a secondary role in the catalysis by CM.  相似文献   

6.
A comparative theoretical study of a bimolecular reaction in aqueous solution and catalyzed by the enzyme catechol O-methyltransferase (COMT) has been carried out by a combination of two hybrid QM/MM techniques: statistical simulation methods and internal energy minimizations. In contrast to previous studies by other workers, we have located and characterized transition structures for the reaction in the enzyme active site, in water and in a vacuum, and our potential of mean force calculations are based upon reaction coordinates obtained from features of the potential energy surfaces in the condensed media, not from the gas phase. The AM1/CHARMM calculated free energy of activation for the reaction of S-adenosyl methionine (SAM) with catecholate catalyzed by COMT is 15 kcal mol(-1) lower the AM1/TIP3P free-energy barrier for the reaction of the trimethylsulfonium cation with the catecholate anion in water at 300 K, in agreement with previous estimates. The thermodynamically preferred form of the reactants in the uncatalyzed model reaction in water is a solvent-separated ion pair (SSIP). Conversion of the SSIP into a contact ion pair, with a structure resembling that of the Michaelis complex (MC) for the reaction in the COMT active site, is unfavorable by 7 kcal mol(-1), largely due to reorganization of the solvent. We have considered alternative ways to estimate the so-called "cratic" free energy for bringing the reactant species together in the correct orientation for reaction but conclude that direct evaluation of the free energy of association by means of molecular dynamics simulation with a simple standard-state correction is probably the best approach. The latter correction allows for the fact that the size of the unit cell employed with the periodic boundary simulations does not correspond to the standard state concentration of 1 M. Consideration of MC-like species allows a helpful decomposition of the catalytic effect into preorganization and reorganization phases. In the preorganization phase, the substrates are brought together into the MC-like species, either in water or in the enzyme active site. In the reorganization phase, the roles of the enzymic and aqueous environments may be compared directly because reorganization of the substrate is about the same in both cases. Analysis of the electric field along the reaction coordinate demonstrates that in water the TS is destabilized with respect to the MC-like species because the polarity of the solute diminishes and consequently the reaction field is also decreased. In the enzyme, the electric field is mainly a permanent field and consequently there is only a small reorganization of the environment. Therefore, destabilization of the TS is lower than in solution, and the activation barrier is smaller.  相似文献   

7.
The catalytic reaction of chorismate mutase (CM) has been the subject of major current attention. Nevertheless, the origin of the catalytic power of CM remains an open question. In particular, it has not been clear whether the enzyme works by providing electrostatic transition state stabilization (TSS), by applying steric strain, or by populating near attack conformation (NAC). The present work explores this issue by a systematic quantitative analysis. The overall catalytic effect is reproduced by the empirical valence bond (EVB) method. In addition, the binding free energy of the ground state and the transition state is evaluated, demonstrating that the enzyme works by TSS. Furthermore, the evaluation of the electrostatic contribution to the reduction of the activation energy establishes that the TSS results from electrostatic effects. It is also found that the apparent NAC effect is not the reason for the catalytic effect but the result of the TSS. It is concluded that in CM as in other enzymes the key catalytic effect is electrostatic TSS. However, since the charge distribution of the transition state and the reactant state is similar, the stabilization of the transition state leads to reduction in the distance between the reacting atoms in the reactant state.  相似文献   

8.
Citrulline was incorporated via chemical semisynthesis at position 90 in the active site of the AroH chorismate mutase from Bacillus subtilis. The wild-type arginine at this position makes hydrogen-bonding interactions with the ether oxygen of chorismate. Replacement of the positively charged guanidinium group with the isosteric but neutral urea has a dramatic effect on the ability of the enzyme to convert chorismate into prephenate. The Arg90Cit variant exhibits a >104-fold decrease in the catalytic rate constant kcat with a 2.7-fold increase in the Michaelis constant Km. In contrast, its affinity for a conformationally constrained inhibitor molecule that effectively mimics the geometry but not the dissociative character of the transition state is only reduced by a factor of approximately 6. These results show that an active site merely complementary to the reactive conformation of chorismate is insufficient for catalysis of the mutase reaction. Instead, electrostatic stabilization of the polarized transition state by provision of a cationic hydrogen bond donor proximal to the oxygen in the breaking C-O bond is essential for high catalytic efficiency.  相似文献   

9.
The isochorismate-pyruvate lyase from Pseudomonas aeruginosa (PchB) catalyzes two pericyclic reactions, demonstrating the eponymous activity and also chorismate mutase activity. The thermodynamic parameters for these enzyme-catalyzed activities, as well as the uncatalyzed isochorismate decomposition, are reported from temperature dependence of k(cat) and k(uncat) data. The entropic effects do not contribute to enzyme catalysis as expected from previously reported chorismate mutase data. Indeed, an entropic penalty for the enzyme-catalyzed mutase reaction (ΔS(++) = -12.1 ± 0.6 cal/(mol K)) is comparable to that of the previously reported uncatalyzed reaction, whereas that of the enzyme-catalyzed lyase reaction (ΔS(++) = -24.3 ± 0.2 cal/(mol K)) is larger than that of the uncatalyzed lyase reaction (-15.77 ± 0.02 cal/(mol K)) documented here. With the assumption that chemistry is rate-limiting, we propose that a reactive substrate conformation is formed upon loop closure of the active site and that ordering of the loop contributes to the entropic penalty for converting the enzyme substrate complex to the transition state.  相似文献   

10.
Chalcone isomerase catalyzes the transformation of chalcone to naringerin as a part of flavonoid biosynthetic pathways. The global reaction takes place through a conformational change of the substrate followed by chemical reaction, being thus an excellent example to analyze current theories about enzyme catalysis. We here present a detailed theoretical study of the enzymatic action on the conformational pre-equilibria and on the chemical steps for two different substrates of this enzyme. Free-energy profiles are obtained in terms of potentials of mean force using hybrid quantum mechanics/molecular mechanics potentials. The role of the enzyme becomes clear when compared to the counterpart equilibria and reactions in aqueous solution. The enzyme does not only favor the chemical reaction lowering the corresponding activation free energy but also displaces the conformational equilibria of the substrates toward the reactive form. These results, which can be rationalized in terms of the electrostatic interactions established in the active site between the substrate and the environment, agree with a more general picture of enzyme catalysis. According to this, an active site designed to accommodate the transition state of the reaction would also have consequences on the reactant state, stabilizing those forms which are geometrically and/or electronically closer to the transition structure.  相似文献   

11.
Kinetic isotope effects have been computed for the Claisen rearrangement of chorismate to prephenate in aqueous solution and in the active site of chorismate mutase from B. subtilus. These included primary 13C and 18O and secondary 3H effects for substitutions at the bond-making and bond-breaking positions. The initial structures of the putative stationary points on the potential energy surface, required for the calculations of isotope effects using the CAMVIB/CAMISO programs, have been selected from hybrid QM/MM molecular dynamical simulations using the DYNAMO program. Refinement of the reactant complex and transition-state structures has been carried out by means of AM1/CHARMM24/TIP3P calculations using the GRACE program, with full gradient relaxation of the position of > 5200 atoms for the enzymic simulations, and with a box containing 711 water molecules for the corresponding reaction in aqueous solution. Comparison of these results, and of gas phase calculations, with experimental data has shown that the chemical rearrangement is largely rate-determining for the enzyme mechanism. Inclusion of the chorismate conformational pre-equilibrium step in the modelled kinetic scheme leads to better agreement between recent experimental data and theoretical predictions. These results provide new information on an important enzymatic transformation, and the key factors responsible for the kinetics of its molecular mechanism are clarified. Treatment of the enzyme and/or solvent environment by means of a large and flexible model is absolutely essential for prediction of kinetic isotope effects.  相似文献   

12.
In this tutorial review we show how the methods and techniques of computational chemistry have been applied to the understanding of the physical basis of the rate enhancement of chemical reactions by enzymes. This is to answer the question: Why is the activation free energy in enzyme catalysed reactions smaller than the activation free energy observed in solution? Two important points of view are presented: Transition State (TS) theories and Michaelis Complex (MC) theories. After reviewing some of the most popular computational methods employed, we analyse two particular enzymatic reactions: the conversion of chorismate to prephenate catalysed by Bacillus subtilis chorismate mutase, and a methyl transfer from S-adenosylmethionine to catecholate catalysed by catechol O-methyltransferase. The results and conclusions obtained by different authors on these two systems, supporting either TS stabilisation or substrate preorganization, are presented and compared. Finally we try to give a unified view, where a preorganized enzyme active site, prepared to stabilise the TS, also favours those reactive conformations geometrically closer to the TS.  相似文献   

13.
Multiple profiles for the reaction from chorismate to prephenate in the enzyme chorismate mutase calculated with hybrid density functional combined quantum mechanics/molecular mechanics methods (B3LYP/6-31G(d)-CHARMM27) agree well with experiment, and provide direct evidence of transition-state stabilization by this important enzyme, which is at the centre of current debates about the nature of enzyme catalysis.  相似文献   

14.
15.
Standard free energies for formation of ground-state reactive conformers (DeltaGN degrees ) and transition states (DeltaG) in the conversion of chorismate to prephenate in water, B. subtilis mutase, E. coli mutase, and their mutants, as well as a catalytic antibody, are related by DeltaG = DeltaGN degrees + 16 kcal/mol. Thus, the differences in the rate constants for the water reaction and catalysts reactions reside in the mole fraction of substrate present as reactive conformers (NACs). These results, and knowledge of the importance of transition state stabilization in other cases, suggest a proposal that enzymes utilize both NAC and transition state stabilization in the mix required for the most efficient catalysis.  相似文献   

16.
To investigate fundamental features of enzyme catalysis, there is a need for high-level calculations capable of modelling crucial, unstable species such as transition states as they are formed within enzymes. We have modelled an important model enzyme reaction, the Claisen rearrangement of chorismate to prephenate in chorismate mutase, by combined ab initio quantum mechanics/molecular mechanics (QM/MM) methods. The best estimates of the potential energy barrier in the enzyme are 7.4-11.0 kcal mol(-1)(MP2/6-31+G(d)//6-31G(d)/CHARMM22) and 12.7-16.1 kcal mol(-1)(B3LYP/6-311+G(2d,p)//6-31G(d)/CHARMM22), comparable to the experimental estimate of Delta H(++)= 12.7 +/- 0.4 kcal mol(-1). The results provide unequivocal evidence of transition state (TS) stabilization by the enzyme, with contributions from residues Arg90, Arg7, and Arg63. Glu78 stabilizes the prephenate product (relative to substrate), and can also stabilize the TS. Examination of the same pathway in solution (with a variety of continuum models), at the same ab initio levels, allows comparison of the catalyzed and uncatalyzed reactions. Calculated barriers in solution are 28.0 kcal mol(-1)(MP2/6-31+G(d)/PCM) and 24.6 kcal mol(-1)(B3LYP/6-311+G(2d,p)/PCM), comparable to the experimental finding of Delta G(++)= 25.4 kcal mol(-1) and consistent with the experimentally-deduced 10(6)-fold rate acceleration by the enzyme. The substrate is found to be significantly distorted in the enzyme, adopting a structure closer to the transition state, although the degree of compression is less than predicted by lower-level calculations. This apparent substrate strain, or compression, is potentially also catalytically relevant. Solution calculations, however, suggest that the catalytic contribution of this compression may be relatively small. Consideration of the same reaction pathway in solution and in the enzyme, involving reaction from a 'near-attack conformer' of the substrate, indicates that adoption of this conformation is not in itself a major contribution to catalysis. Transition state stabilization (by electrostatic interactions, including hydrogen bonds) is found to be central to catalysis by the enzyme. Several hydrogen bonds are observed to shorten at the TS. The active site is clearly complementary to the transition state for the reaction, stabilizing it more than the substrate, so reducing the barrier to reaction.  相似文献   

17.
通过综合使用传统的过渡态优化算法、数学统计工具以及人工神经网络算法(ANN)找到一种不依赖于反应物起始构象而得到化学反应中过渡态结构和能量的方法. 在两个反应物互相接近的过程中, 每一步的几何构象都对应着一个系统能量值. 本研究的目的是尽可能地收集处在反应能量面上的这种能量点值. 通过采用几何参数作为自变量对势能面进行模拟研究, 得到了势能面上对应过渡态结构的一阶鞍点. 采用乙醛负离子和甲醛作为反应物, 对经典的醛醇缩合反应中的亲核进攻步骤进行了研究. 对内禀反应坐标(IRC)路径的计算是从反应物的三组不同起始构象出发, 最终获得了反应势能面上的96个点. 本研究中的势能面采用人工神经网络算法进行模拟研究, 并利用交叉验证方法评估得到的结果, 避免了采用人工神经网络算法时过度拟合情况的发生.  相似文献   

18.
A novel technique for computing free energy profiles in enzymatic reactions using the multiple steering molecular dynamics approach in the context of an efficient QM-MM density functional scheme is presented. The conversion reaction of chorismate to prephenate catalyzed by the Bacillus subtilis enzyme chorismate mutase has been chosen as an illustrative example.  相似文献   

19.
The transition states of a chemical reaction in solution are generally accessed through exchange of thermal energy between the solvent and the reactants. As such, an ensemble of reacting systems approaches the transition state configuration of reactant and surrounding solvent in an incoherent manner that does not lend itself to direct experimental observation. Here we describe how gas-phase cluster chemistry can provide a detailed picture of the microscopic mechanics at play when a network of six water molecules mediates the trapping of a highly reactive "hydrated electron" onto a neutral CO(2) molecule to form a radical anion. The exothermic reaction is triggered from a metastable intermediate by selective excitation of either the reactant CO(2) or the water network, which is evidenced by the evaporative decomposition of the product cluster. Ab initio molecular dynamics simulations of energized CO(2)·(H(2)O)(6)(-) clusters are used to elucidate the nature of the network deformations that mediate intracluster electron capture, thus revealing the detailed solvent fluctuations implicit in the Marcus theory for electron-transfer kinetics in solution.  相似文献   

20.
Two different transition structures (TSs) have been located and characterized for the chorismate conversion to prephenate in Bacillus subtilis chorismate mutase by means of hybrid quantum-mechanical/molecular-mechanical (QM/MM) calculations. GRACE software, combined with an AM1/CHARMM24/TIP3P potential, has been used involving full gradient relaxation of the position of ca. 3300 atoms. These TSs have been connected with their respective reactants and products by the intrinsic reaction coordinate (IRC) procedure carried out in the presence of the protein environment, thus obtaining for the first time a realistic enzymatic reaction path for this reaction. Similar QM/MM computational schemes have been applied to study the chemical reaction solvated by ca. 500 water molecules. Comparison of these results together with gas phase calculations has allowed understanding of the catalytic efficiency of the protein. The enzyme stabilizes one of the TSs (TSOHout) by means of specific hydrogen bond interactions, while the other TS (TSOHin) is the preferred one in vacuum and in water. The enzyme TS is effectively more polarized but less dissociative than the corresponding solvent and gas phase TSs. Electrostatic stabilization and an intramolecular charge-transfer process can explain this enzymatically induced change. Our theoretical results provide new information on an important enzymatic transformation and the key factors responsible for efficient selectivity are clarified. Received: 25 March 2000 / Accepted: 7 August 2000 / Published online: 23 November 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号