首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trypanothione reductase (TR) catalyzes the NAPDH-dependent reduction of the spermidine-glutathione conjugate trypanothione, an antioxidant found in Trypanosomatid parasites. TR plays an essential role in the parasite's defense against oxidative stress and has emerged as a prime target for drug development. Here we report the synthesis of several trypanothione analogues and their inhibitory effects on T. cruzi TR. All are competitive inhibitors with K(i) values ranging from 30 to 91 microM.  相似文献   

2.
Two identical polyamine peptide conjugate libraries were screened against the parasitic enzyme trypanothione reductase. One of these libraries was in a solution format, while the other was resin-based and was used in two resin-based screens (a diminution assay and a direct bead screening). Potent inhibitors (100 nM) of trypanothione reductase were identified both in the solution screen and in the resin-based screens when using the PEGA resin of Meldal. Resin screening of both types failed to work with TentaGel resin. Importantly there was excellent agreement between the solution and resin-based assays, suggesting both methods are reliable for the screening of combinatorial libraries.  相似文献   

3.
Visceral leishmaniasis, most lethal form of Leishmaniasis, is caused by Leishmania infantum in the Old world. Current therapeutics for the disease is associated with a risk of high toxicity and development of drug resistant strains. Thiol‐redox metabolism involving trypanothione and trypanothione reductase, key for survival of Leishmania, is a validated target for rational drug design. Recently published structure of trypanothione reductase (TryR) from L. infantum, in oxidized and reduced form along with Sb(III), provides vital clues on active site of the enzyme. In continuation with our attempts to identify potent inhibitors of TryR, we have modeled binding modes of selected tricyclic compounds and quinone derivatives, using AutoDock4. Here, we report a unique binding mode for quinone derivatives and 9‐aminoacridine derivatives, at the FAD binding domain. A conserved hydrogen bonding pattern was observed in all these compounds with residues Thr335, Lys60, His461. With the fact that these residues aid in the orientation of FAD towards the active site forming the core of the FAD binding domain, designing selective and potent compounds that could replace FAD in vivo during the synthesis of Trypanothione reductase can be deployed as an effective strategy in designing new drugs towards Leishmaniasis. We also report the binding of Phenothiazine and 9‐aminoacridine derivatives at the Z site of the protein. The biological significance and possible mode of inhibition by quinone derivatives, which binds to FAD binding domain, along with other compounds are discussed. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

4.
Parasitic diseases such as sleeping sickness, Chagas' heart disease, and malaria are major health problems in poverty-stricken areas. Antiparasitic drugs that are not only active but also affordable and readily available are urgently required. One approach to finding new drugs and rediscovering old ones is based on enzyme inhibitors that paralyze antioxidant systems in the pathogens. These antioxidant ensembles are essential to the parasites as they are attacked in the human host by strong oxidants such as peroxynitrite, hypochlorite, and H2O2. The pathogen-protecting system consists of some 20 thiol and dithiol proteins, which buffer the intraparasitic redox milieu at a potential of -250 mV. In trypanosomes and leishmania the network is centered around the unique dithiol trypanothione (N1,N8-bis(glutathionyl)spermidine). In contrast, malaria parasites have a more conservative dual antioxidative system based on glutathione and thioredoxin. Inhibitors of antioxidant enzymes such as trypanothione reductase are, indeed, parasiticidal but they can also delay or prevent resistance against a number of other antiparasitic drugs.  相似文献   

5.
Xanthene derivatives were synthesized and evaluated for their potential as trypanothione reductase (TryR) inhibitors and chloroquine (CQ) potentiating agents. Some derivatives displayed inhibitory activity against TryR comparable to known tricyclic anti-depressants. On the other hand a number of derivatives increased CQ accumulation and potentiating effects in a resistant strain of Plasmodium falciparum with one compound also displaying strong intrinsic antimalarial activity.  相似文献   

6.
Trypanothione reductase (TR) catalyzes the NADPH-dependent reduction of trypanothione disulfide (1). TR plays a central role in the trypanosomatid parasite's defense against oxidative stress and has emerged as a promising target for antitrypanosomal drugs. We describe the synthesis and activity of dethiotrypanothione and analogues (2-4) as inhibitors of Trypanosoma cruzi TR. The syntheses of these macrocycles feature ring-closing olefin metathesis (RCM) reactions catalyzed by ruthenium catalyst 17. Derivative 4 is our most potent inhibitor with a Ki=16 microM.  相似文献   

7.
Chalcones, either natural or synthetic, are known to exhibit various biological activities. The present study aimed to evaluate the in vitro and in silico activities of some chalcone analogues as potential antleishmanial agents via inhibition of the trypanothione reductase enzyme (TR). Five chalcone analogues were synthesized using Claisen-Schmidt reaction and their activity has been evaluated against Leishmania donovani and presented as IC50 values. Various integrated web-based technologies were used to assess the synthesized compounds' absorption, distribution, metabolism, excretion, and toxicity profile (ADMET). The binding affinity of the most potent chalcone for the selected target was then investigated using Auto-Dock 4.0. Additionally, the molecular dynamics was performed using WEBGRO. (E)-1-(4-bromophenyl)-3-(4-hydroxyphenyl) prop-2-en-1-one (Chalcone 4) has shown the highest inhibitory effect with IC50 value 0.03 ± 0.16 µM. In addition, the pharmacokinetic and toxicological investigations revealed its good oral bioavailability and low toxicity. Furthermore, chalcone 4 was found to interact with high affinity (?8.6 kcal/mole) with trypanothione reductase (TR), an essential enzyme for the leishmanial parasite. Molecular dynamics simulation revealed several interesting features responsible for the potency and stability of chalcone 4 as TR inhibitor. Thus, the promising activity against Leishmania donovani, compared to amphotericin B and other reported chalcones derivatives, proposes the use of chalcone 4 as a potential new therapy for visceral leishmaniasis.  相似文献   

8.
Natural products from plants contain many interesting biomolecules. Among them, quercetin (Q), gallic acid (GA), and rutin (R) all have well-reported antileishmanial activity; however, their exact mechanisms of action are still not known. The current study is a step forward towards unveil the possible modes of action of these compounds against Leishmania donovani (the causative agent of visceral leishmaniasis). The selected compounds were checked for their mechanisms of action against L. donovani using different biological assays including apoptosis and necrosis evaluation, effects on genetic material (DNA), quantitative testing of nitric oxide production, ultrastructural modification via transmission electron microscopy, and real-time PCR analysis. The results confirmed that these compounds are active against L. donovani, with IC50 values of 84.65 µg/mL, 86 µg/mL, and 98 µg/mL for Q, GA, and R, respectively. These compounds increased nitric oxide production and caused apoptosis and DNA damage, which led to changes in the treated cells’ ultrastructural behavior and finally to the death of L. donovani. These compounds also suppressed essential enzymes like trypanothione reductase and trypanothione synthetase, which are critical for leishmanial survival. The selected compounds have high antileishmanial potentials, and thus in-vivo testing and further screening are highly recommended.  相似文献   

9.
It was shown that coupling hydrophilic interaction chromatography (HILIC) to Orbitrap Fourier transform mass spectrometery (FT-MS) provided an excellent tool for metabolic profiling, principally due to rapid elution of lipids in advance of most metabolites entering the mass spectrometer. We used in vitro cultivated procyclic forms of the protozoan parasite Trypanosoma brucei as a source of metabolites to test the performance of the HILIC column and the mass accuracy of MS. The mass accuracy achieved fell within 2 ppm for all the metabolites identified within samples. It was, for example, possible to identify the signature metabolite of the trypanosome, trypanothione, and also glutathione which were well retained by the HILIC column. By comparing trypanosomes grown in two different media we were able to clearly distinguish the samples in terms of the relative abundance of a number of metabolites using Sieve 1.1 software.  相似文献   

10.
Viewed globally, parasitic diseases such as malaria and Chagas' cardiopathy pose an increasing threat to human health and welfare. Recognition of this problem and the challenge of synthesizing a quinine-like antimalarial agent sparked off the development of the chemical industry about 100 years ago. Our contribution deals with aspects of drug design, a young branch of pharmaceutical chemistry. As drug targets the flavoenzyme, glutathione reductase, and the recently discovered parasite enzyme, trypanothione reductase, were chosen. Based on the knowledge of the structure of these molecules, the modeling of enzyme inhibitors as potential chemotherapeutic agents against parasites has become possible. In addition, biochemical and clinical observations are considered since chemical principles of biological evolution can serve as guidelines for the pharmaceutical chemists. The picture shows two erythrocytes destroyed by malaria parasites. In the center of the photograph a parasite is just leaving its host cell through the ruptured cell membrane. Its target could be a neighboring healthy erythrocyte.  相似文献   

11.
A focused library of inhibitors of the enzyme trypanothione reductase was prepared using solid-phase synthesis. The inhibitors were based on a previously identified, non-competitive, lead compound comprising of two Pmc (2,2,5,7,8-pentamethylchroman-6-sulfonyl) side-chain protected, N-capped arginine residues linked by a spermidine bridge. In total six protecting groups and four capping groups were used to generate a 24-membered library. All compounds bearing the 5-methoxyindole-3-acetic acid capping group were found to have good activity. The most potent inhibitor was observed to contain the Mtr (4-methoxy-2,3,6-trimethylbenzenesulphonyl) protecting group on the arginine residue, terminated with tryptophan as the capping group.  相似文献   

12.
Out of various tropical diseases caused by trypanosomatids, leishmaniasis is a life-threatening disease caused by the leishmania parasite. We are targeting the thiol metabolic pathway of the parasite for drug development, and trypanothione reductase (TryR) is a key enzyme of this pathway. It is important to gather significant knowledge about biophysical and intrinsic properties of this enzyme which will be helpful in better understanding of this drug-target enzyme. We report here the modulation of activity and stability of TryR from Leishmania infantum in the presence of various denaturants and pHs. The enzyme is quite stable under high concentration of denaturants and showed better stability compared to TryR of Leishmania donovani, whose sequence differs at only on position (Ala363→Gly). Structural basis of the destabilizing effects is discussed.  相似文献   

13.
Polyphenolic and Terpenoids are potent natural antiparasitic compounds. This study aimed to identify new drug against Leishmania parasites, leishmaniasis’s causal agent. A new in silico analysis was accomplished using molecular docking, with the Autodock vina program, to find the binding affinity of two important phytochemical compounds, Masticadienonic acid and the 3-Methoxycarpachromene, towards the trypanothione reductase as target drugs, responsible for the defense mechanism against oxidative stress and virulence of these parasites. There were exciting and new positive results: the molecular docking results show as elective binding profile for ligands inside the active site of this crucial enzyme. The ADMET study suggests that the 3-Methoxycarpachromene has the highest probability of human intestinal absorption. Through this work, 3-Methoxycarpachromene and Masticadienonic acid are shown to be potentially significant in drug discovery, especially in treating leishmaniasis. Hence, drug development should be completed with promising results.  相似文献   

14.
Chagas disease is a parasitic infection caused by the protozoa Trypanosoma cruzi that affects about 6 million people in Latin America. Despite its sanitary importance, there are currently only two drugs available for treatment: benznidazole and nifurtimox, both exhibiting serious adverse effects and limited efficacy in the chronic stage of the disease. Polyamines are ubiquitous to all living organisms where they participate in multiple basic functions such as biosynthesis of nucleic acids and proteins, proliferation and cell differentiation. T. cruzi is auxotroph for polyamines, which are taken up from the extracellular medium by efficient transporters and, to a large extent, incorporated into trypanothione (bis-glutathionylspermidine), the major redox cosubstrate of trypanosomatids. From a 268-compound database containing polyamine analogs with and without inhibitory effect on T. cruzi we have inferred classificatory models that were later applied in a virtual screening campaign to identify anti-trypanosomal compounds among drugs already used for other therapeutic indications (i.e. computer-guided drug repositioning) compiled in the DrugBank and Sweetlead databases. Five of the candidates identified with this strategy were evaluated in cellular models from different pathogenic trypanosomatids (T. cruzi wt, T. cruzi PAT12, T. brucei and Leishmania infantum), and in vitro models of aminoacid/polyamine transport assays and trypanothione synthetase inhibition assay. Triclabendazole, sertaconazole and paroxetine displayed inhibitory effects on the proliferation of T. cruzi (epimastigotes) and the uptake of putrescine by the parasite. They also interfered with the uptake of others aminoacids and the proliferation of infective T. brucei and L. infantum (promastigotes). Trypanothione synthetase was ruled out as molecular target for the anti-parasitic activity of these compounds.  相似文献   

15.
Miltefosine (MT) (hexadecylphosphocholine) was implemented to cope with resistance against antimonials, the classical treatment in Leishmaniasis. Given the scarcity of anti- Leishmania (L) drugs and the increasing appearance of resistance, there is an obvious need for understanding the mechanism of action and development of such resistance. Metabolomics is an increasingly popular tool in the life sciences due to it being a relatively fast and accurate technique that can be applied either with a particular focus or in a global manner to reveal new knowledge about biological systems. Three analytical platforms, gas chromatography (GC), liquid chromatography (LC) and capillary electrophoresis (CE) have been coupled to mass spectrometry (MS) to obtain a broad picture of metabolic changes in the parasite. Impairment of the polyamine metabolism from arginine (Arg) to trypanothione in susceptible parasites treated with MT was in some way expected, considering the reactive oxygen species (ROS) production described for MT. Importantly, in resistant parasites an increase in the levels of amino acids was the most outstanding feature, probably related to the adaptation of the resistant strain for its survival inside the parasitophorous vacuole.
Online Abstract Figure
?  相似文献   

16.
Electrochemical and ESR studies were carried out in this work with the aim of characterizing the reduction mechanisms of 4-substituted and 1,4-disubstituted 7-nitroquinoxalin-2-ones by means of cyclic voltammetry in DMSO as aprotic solvent. Two reduction mechanisms were found for these compounds: the first, for compounds bearing a labile hydrogen by following a self-protonation mechanism (ECE steps), and the second, for compounds without labile hydrogen, based on a purely electrochemical reduction mechanism (typical of nitroheterocycles). The electrochemical results were corroborated using ESR spectroscopy allowing us to propose the hyperfine splitting pattern of the nitro-radical, which was later corroborated by the ESR simulation spectra. All these compounds were assayed as growth inhibitors against Trypanosoma cruzi: first, on the non-proliferative (and infective) form of the parasite (trypomastigote stage), and then, the ones that displayed activity, were assayed on the non-infective form (epimastigote stage). Thus, we found four new compounds highly active against T. cruzi. Finally, molecular modeling studies suggest the inhibition of the trypanothione reductase like one of the possible mechanisms involved in the trypanocidal action.  相似文献   

17.
《Chemistry & biology》1997,4(11):859-866
Introduction: The tripeptide glutathione is converted to glutathionylspermidine (Gsp) in Escherichia coli and in trypanosomatid parasites by an ATP-cleaving Gsp synthetase activity. In parasites, an additional glutathionylation forms bis-(glutathionyl)-spermidine, trypanothione, believed to be the major surveillance thiol involved in oxidant defense mechanisms in trypanosomatid parasites. In E. coli, the Gsp synthetase is part of a bifunctional enzyme opposed by the hydrolytic Gsp amidase.Results: Gsp amidase and Gsp synthetase activities of the bifunctional E. coli enzyme can be separately targeted by potent, selective slow-binding inhibitors that induce time-dependent inhibition. The inhibitor γ-Glu-Ala-Gly-CHO most probably captures Cys59 and accumulates as the tetrahedral adduct in the amidase active site. Inhibitory Gsp phosphinate analogs are phosphorylated by ATP to yield phosphinophosphate analogs in the synthetase active site. Binding of phosphinophosphate in the Gsp synthetase active site potentiates the inhibition affinity for the aldehyde at the Gsp amidase active site by two orders of magnitude.Conclusions: Time-dependent inhibition of the Gsp amidase activity by the aldehyde substrate analog supports previous work that suggests glutathionyl acyl-enzyme intermediate formation in the Gsp amidase reaction mechanism. Use of potent selective inhibitors against Gsp amidase (aldehyde) and Gsp synthetase (phosphinate) activities provides further evidence of interdomain communication in the bifunctional enzyme from E. coli.  相似文献   

18.
19.
Sulfur extraction from the tripeptide thiol, glutathione (α-glu-cys-gly) ( 1 ) via reaction with syn-(1-bromo-ethyl, methyl)bimane ( 2 ) yields glutathione slfide and the thiabridged bimane, μ(S)-syn-(methylmethylene, methyl)bimane ( 3 ) [1]. The reaction with 2 has been extended to dithiols as models for important biological thiols such as reduced trypanothione. The fluorescent dithiols were derived through reductive cleavage with triphenylphosphine (tetrahydrofuan, Hcl−Kbr solution, pH 1.5) of the dithiatriclic bimane esters, μ(O2C(CH2)SS(CH2)nCO2)-syn-(CH2,CH3)B, n = 1, 2, 3, prepared from syn-(bromomethyl, methyl)bimane ( 4 ) and the corresponding dithiadicarboxylic acids. Sulfur extraction led to 3 and the cyclic sulfide derived from the dithiol in moderate yields. The dithiols, dithiothreitol and dithioerythritol, also yielded moderate amounts of 3 . Sterically hindered thiols (e.g., those in hemoglobin) gave 3 in lower yields. Treatment of human red blood cells and red cells membranes (hemoglobin-free ghosts) with 2 gave rise to some 3 . A side product in some reactions was the oxabridged bimane, μ(O)-syn-(methylmethylene, methyl)bimane.  相似文献   

20.
The natural product lupeol 1 was isolated from aerial parts of Vernonia scorpioides with satisfactory yield, which made it viable to be used as starting material in semisynthetic approach. Ten lupeol derivatives 2–11 were prepared by classical procedures. Including, five new esters derivatives 7–11, which were obtained by structural modifications in the isopropylidene fragment. All semisynthetic compounds and lupeol 1–11 were confirmed by 1H NMR, 13C NMR and HRMS. Their antiprotozoal activity was evaluated in vitro against L. amazonensis and T. cruzi. Derivative 6 showed the best antitrypanosomal activity (IC50 = 12.48 μg/mL) and the lowest cytotoxic derivative (CC50 = 161.50 μg/mL). The mechanism of action of the most active derivatives (4, 6 and 11) is not dependent from the enzyme trypanothione reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号