首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis, structural, and retrostructural analysis of a library of self‐assembling dendrons containing triethyl and tripropyl ammonium, pyridinium and 3‐methylimidazolium chloride, tetrafluoroborate, and hexafluorophosphate at their apex are reported. These dendritic ionic liquids self‐assemble into supramolecular columns or spheres which self‐organize into 2D hexagonal or rectangular and 3D cubic or tetragonal liquid crystalline and crystalline lattices. Structural analysis by X‐ray diffraction experiments demonstrated the self‐assembly of supramolecular dendrimers containing columnar and spherical nanoscale ionic liquid reactors segregated in their core. Both in the supramolecular columns and spheres the noncovalent interactions mediated by the ionic liquid provide a supramolecular polymer and therefore, these assemblies represent a new class of dendronized supramolecular polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4165–4193, 2009  相似文献   

2.
3.
Self-assembling building blocks that are readily functionalizable and capable of achieving programmed hierarchical organization have enabled us to create various functional nanomaterials. We have previously demonstrated that N,N'-disubstituted 4,6-diaminopyrimidin-2(1 H)-one (DAP), a guanine-cytosine hybridized molecule, is a versatile building block for the creation of tapelike supramolecular polymer species in solution. In the current study, DAP was functionalized with azobenzene side chains. 1H NMR, UV/Vis, and dynamic light scattering studies confirmed the presence of nanometer-scale tapelike supramolecular polymers in alkane solvents at micromolar regimes. At higher concentrations (millimolar regimes), the supramolecular polymers hierarchically organized into lamellar superstructures to form organogels, as shown by X-ray diffraction and polarized optical microscopy. Remarkably, the azobenzene side chains are photoisomerizable even in the supramolecular polymers, owing to their loosely packed state supported by the rigid hydrogen-bonded scaffold, enabling us to establish photocontrollable supramolecular polymerization and higher order organization of the tapelike supramolecular polymers into lamellar superstructures.  相似文献   

4.
Three-dimensional (3D) π-conjugated dendritic oligothiophenes up to a third generation have been functionalized with tris(decyloxy)phenylethynyl tails at the periphery. The first-generation compounds (3 T-p-Ph-C10 and 6 T-p-Ph-C10) were synthesized by palladium-catalyzed Sonogashira coupling reactions, whereas the higher generation products were synthesized by palladium-catalyzed Suzuki coupling reactions in a divergent approach. The optical and electrochemical properties were investigated by UV/Vis absorption, fluorescence spectroscopy, and cyclic voltammetry. The results revealed that the terminal tris(alkyloxy)phenylethynyl groups are conjugated to the branched oligothiophene core, yielding redshifted absorption and fluorescence spectra and reduced optical band gaps relative to the dendritic oligothiophene core. A structural study revealed a close relationship between the type of supramolecular organization and the size of the oligothiophene core. The first-generation compounds 3 T-p-Ph-C10 and 6 T-p-Ph-C10 displayed columnar phases in the bulk state, which was confirmed by two-dimensional wide-angle X-ray scattering (2D WAXS) measurements. The self-assembly into columnar stacks has mainly been attributed to phase separation between the rigid thiophene cores and the flexible side-chains assisted by minor π-stacking interactions between the conjugated dendritic oligothiophene units. The high-generation compounds, however, showed less ordered structures in the solid state.  相似文献   

5.
We report an unprecedented hierarchical self‐assembly of an achiral twin‐tapered bi‐1,3,4‐oxadiazole derivative (2,2‐bis(3,4,5‐trioctanoxyphenyl)‐bi‐1,3,4‐oxadiazole, BOXD‐T8). This molecule can form a layer‐structured lyotropic liquid crystal and further forms a helical fibrous organogel in DMF at concentrations above 0.6 wt %. The self‐assembly process of BOXD‐T8 in DMF is accompanied by a change in its fluorescence. The pitches of the helical fibers are non‐uniform, and both left‐ and right‐handed helical fibers are observed in equal quantities. Intermolecular π–π interactions between aromatic segments have been demonstrated to be the driving force for aggregate formation. This helical structure of BOXD‐T8 is dependent on the solvent, concentration, and the layer‐structured intermediate liquid‐crystalline state.  相似文献   

6.
7.
We report on the design and synthesis of three series of segmented amphiphilic block codendrimers, and on their self-organizing behavior in liquid-crystalline mesophases. Connecting two prefunctionalized monodendrons, each differing in their chemical constitution and generation number, yielded these diblock supermolecules. One wedge of the codendrimer was made hydrophobic, and is based on a branched poly(benzyl ether) monodendron functionalized at the periphery by lipophilic aliphatic fragments (also known as Percec dendrons). The other segment was made hydrophilic by the grafting of hydroxyl-containing moieties onto the focal functions of the former dendrons. Both types of dendrons were prepared independently by convergent methods and then joined in the ultimate stage of the synthetic procedure by cross-coupling reactions. In this way, the proportion of the dendritic blocks was varied independently to allow control of the hydrophilic/hydrophobic balance (HHB), the hydrogen-bonding ability, and consequently the capacity to tune the mesomorphic properties of the resulting "superamphiphiles" was anticipated. Essentially all the dendritic compounds display a thermotropic mesomorphism directly at or near room temperature as determined by using X-ray diffraction, polarized optical microscopy, and differential scanning calorimetry. The nature and the supramolecular organization of the mesophases, namely columnar and cubic phases, are correlated to the size of the respective block monodendrons and the chemical structures of the dendromesogens. The molecular organization within the cubic phases can be geometrically described and well understood by the space-filling polyhedron model.  相似文献   

8.
9.
First- and second-generation dendrimers with an isocyanide group as the focal functional point (CN-G(n); n: 1,2) and their corresponding organometallic complexes [MCl(CN-G(n))] (M: Au, Cu), [{CuCl(CN-G(n))2}2], and trans-[MI2(CN-G(n))2] (M: Pd, Pt) have been synthesized. The free ligands and the first-generation complexes do not show mesogenic behavior, but all of the second-generation complexes display a thermotropic micellar cubic mesophase, over a large temperature range, and some of them directly at room temperature. The structure of the mesophase consists of the packing of two, discrete polyhedral micellar aggregates in a three-dimensional cubic Im$\bar 3$m lattice.  相似文献   

10.
A novel class of bent-core molecules with oligo(siloxane) or carbosilane units at both ends was synthesized and the self-organization of these molecules was investigated by polarizing microscopy, DSC, X-ray scattering, dielectric and electrooptical methods. Depending on the size of the silicon-containing segments, smectic and columnar liquid crystalline phases are formed. Most smectic phases are low birefringent and composed of macroscopic domains of opposite handedness (dark conglomerate phases). The switching process in these smectic phases is surface stabilized ferroelectric and, depending on the conditions, two distinct slow relaxation processes to nonpolar structures were observed. It is proposed that the smectic phases are built up by chiral and polar SmCsPF layer stacks which are separated by anticlinic interfaces. If the size of these layer stacks is sufficiently large a coupling to the substrate surfaces takes place and ferroelectric switching is observed. It is also suggested that the sponge-like layer distortion, occurring in the low birefringent mesophases, is due to an escape from the local polar order within these SmCsPF layer stacks. For compounds with larger silylated units a steric frustration arises, which leads to layer modulation (columnar ribbon phases) and this is associated with a transition from ferroelectric to antiferroelectric switching. All compounds show a switching of the molecules around the long axis which reverses the layer chirality.  相似文献   

11.
12.
13.
An amphiphilic dendron containing three dendrite L-glutamic acid units and a long alkyl chain was synthesized by a convergent method. It was found that the dendron could form hydrogels over a wide pH range from 2 to 13. Moreover, accompanying the pH change, the compounds self-assembled into various chiral structures: from helical nanotube, helical nanotube with a string of beads, and coiled superhelix to dendrite nanostructures, such as pine, feather, etc. A series of characterizations based on TEM observations, X-ray diffraction and FTIR spectroscopic measurements revealed that the dendron formed a bilayer first and then hierarchically self-assembled into various chiral nanostructures. The four carboxylic acid groups and three amide groups played an important role in the self-assembly. The interaction between the multiamide groups stabilized the bilayer structures, whereas the ionization degree of the carboxylic acids was responsible for the formation of various chiral structures. The work presented a hydrogel system with wide pH adaptability and showed the regulation on chiral structures by simple pH variations.  相似文献   

14.
15.
Eu(III), the last piece in the puzzle: Europium-induced self-assembly of ligands having a C(3)-symmetrical benzene-1,3,5-tricarboxamide core results in the formation of luminescent gels. Supramolecular polymers are formed through hydrogen bonding between the ligands. The polymers are then brought together into the gel assembly through the coordination of terpyridine ends by Eu(III) ions (blue dashed arrow: distance between two ligands in the strand direction).  相似文献   

16.
Semifluorinated first-generation self-assembling dendrons attached via a flexible spacer to electron-donor molecules induce pi-stacking of the donors in the center of a supramolecular helical pyramidal column. These helical pyramidal columns self-organize in various columnar liquid crystal phases that mediate self-processing of large single crystal liquid crystal domains of columns and self-repair their intracolumnar structural defects. In addition, all supramolecular columns exhibit a columnar phase at lower temperatures that maintains the helical pyramidal columnar supramolecular structure and displays higher intracolumnar order than that in the liquid crystals phases. The results described here demonstrate the universality of this concept, the power of the fluorous phase or the fluorophobic effect in self-assembly and the unexpected generality of pyramidal liquid crystals.  相似文献   

17.
A universal building block for the convergent synthesis of a wide variety of different T-shaped ternary amphiphiles was developed and used for the synthesis of a series of new liquid-crystalline materials composed of a rigid biphenyl core with polar glycerol groups at both ends and linear or branched alkyl chains in a lateral position. In addition, compounds with bulky achiral (2,4,6-trimethylphenoxy, adamantane-1-carboxylate, benzoate) or chiral (menthyl or cholesteryl) substituents attached to the end of the lateral alkyl chain were also investigated. In all cases the lateral chains were connected to the aromatic core by an ether linkage. The effect of the ether linking unit on mesophase stability and mesophase type is discussed with respect to conformational effects. The liquid-crystalline phases were investigated by polarizing microscopy, calorimetry, and X-ray diffraction of surface aligned samples. Upon enlarging the lateral chains a series of different polygonal cylinder phases was observed, which were replaced by lamellar phases and a non-cylinder hexagonal columnar phase by further increasing the size of these substituents. Remarkably, only pentagonal, hexagonal, and giant hexagonal cylinder phases could be observed, whereas mesophases composed of cylinders with a smaller number of sides are missing. No distinct chirality effects were observed for the menthyl- and cholesteryl-substituted compounds. However, the rodlike shape of the polycyclic cholesteryl core leads to a unique phase structure combining an organization of the alicyclic cholesteryl cores perpendicular to the layer planes and the aromatic biphenyl cores parallel to the layer planes.  相似文献   

18.
The synthesis and characterization of hydrogen‐bonded star‐shaped complexes consisting of stilbazolyloxy, azopyridyl, and Schiff base‐substituted cyclotriphosphazenes ( 3a , 3b , and 3c , respectively) and monoalkyloxy, bis(dodecyloxy), and tris(dodecyloxy)benzoic acids are reported. The thermal behaviors of complexes are studied by the means of differential scanning calorimetry, polarizing optical microscopy, and X‐ray diffractometry. Only 3a and 3b with monoalkyloxybenzoic acids show a homeotropic smectic A mesophase. The effect of azo and ethylene linkage of mesogenic groups in the cyclotriphosphazenes and the length of the flexible chain in monoalkyloxybenzoic acids on mesophase transition behaviors are investigated, revealing that the linkages in mesogenic groups governs the phase transition temperatures, and the length of flexible chain in proton donors plays an important role in controlling the magnitude of enthalpy and entropy of mesophase transitions in this supramolecular liquid crystal system. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4691–4703, 2008  相似文献   

19.
The bow-shaped molecule 1 bearing a self-complementary DAAD-ADDA (D=donor A=acceptor) hydrogen-bonding array generates, in hydrocarbon solvents, highly ordered supramolecular sheet aggregates that subsequently give rise to gels by formation of an entangled network. The process of hierarchical self-assembly of compound 1 was investigated by the concentration and temperature dependence of UV-visible and (1)H NMR spectra, fluorescence spectra, and electron microscopy data. The temperature dependence of the UV-visible spectra indicates a highly cooperative process for the self-assembly of compound 1 in decaline. The electron micrograph of the decaline solution of compound 1 (1.0 mM) revealed supramolecular sheet aggregates forming an entangled network. The selected area electronic diffraction patterns of the supramolecular sheet aggregates were typical for single crystals, indicative of a highly ordered assembly. The results exemplify the generation, by hierarchical self-assembly, of highly organized supramolecular materials presenting novel collective properties at each level of organization.  相似文献   

20.
On a roll : Attachment of flexible coils to the middle of a rigid rod generates T‐shaped rod–coil molecules that self‐assemble into layers that roll up to form filled cylindrical and hollow tubular scrolls, depending on the coil length, in the solid state (see picture); the rods are arranged parallel to the layer plane.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号