首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uniform zinc antimoniate (ZnSb2O4) nanowires and nanobelts with a spinel structure were synthesized by an indirect thermal evaporation method in air. The as-synthesized ZnSb2O4 nanowires and nanobelts are single crystalline, usually several tens of microns in length. The diameter of the nanowires is about 20 nm; the thickness and the width of the nanobelts are about 15 nm and 60 nm, respectively. Most of the nanowires and nanobelts grow along the [001] direction. A possible formation mechanism is also proposed to account for the growth of these ZnSb2O4 nanobelts and nanowires. PACS 61.46.+w; 81.07.-b  相似文献   

2.
Single-crystalline Na2Ti6O13 nanobelts were prepared on large-scale by molten salt synthesis at 825 °C for 3 h. The obtained nanobelts have typical width of less than 200 nm and thickness of 10-30 nm, and length up to 10 μm. The growth direction of the nanobelts was determined to be along [0 1 0]. Electrical transport property of an individual nanobelt was measured at room temperature and ambient atmosphere, and results showed that the nanobelts are semiconductor. Na2Ti6O13 nanobelts exhibited good photocatalytic efficiency for the degradation of RhB under UV irradiation.  相似文献   

3.
SnO2-core/In2O3-shell nanobelts were fabricated by a two-step process comprising thermal evaporation of Sn powders and sputter-deposition of In2O3. Transmission electron microscopy and X-ray diffraction analyses revealed that the core of a typical core–shell nanobelt comprised a simple tetragonal-structured single crystal SnO2 and that the shell comprised an amorphous In2O3. Multiple networked SnO2-core/In2O3-shell nanobelt sensors showed the response of 5.35% at a NO2 concentration of 10 ppm at 300 °C. This response value is more than three times larger than that of bare-SnO2 nanobelt sensors at the same NO2 concentration. The enhancement in the sensitivity of SnO2 nanobelts to NO2 gas by sheathing the nanobelts with In2O3 can be accounted for by the modulation of electron transport by the In2O3–In2O3 homojunction.  相似文献   

4.
Octahedral In2O3 crystals were synthesized by evaporation of a mixture of In2O3 and graphite in a horizontal double-tube system. By adjusting the experimental conditions, In2O3 nanowires and nanobelts were also obtained. The microstructures of the resultant In2O3 materials were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction (SAED), X-ray diffraction. In addition, the growth mechanism of the octahedral In2O3 crystals was discussed in detail.  相似文献   

5.
In this report we review the growth of indium oxide (In2O3) nanostructures, including octahedral nanocrystals (NCs), nanobelts (NBs), nanosheets (NSs), and nanowires (NWs), by hot-wall chemical vapor deposition (HW-CVD). This system is highly controllable, allowing the user to easily access different growth regimes – each corresponding to the growth of a different nanostructure – by changing growth variables of the HW-CVD system. Hot-wall CVD produces crystalline nanostructures; here we present a survey of microstructural characterizations of the four types of In2O3 nanostructures using transmission- and scanning-electron microscopy. Interestingly, the In2O3 nanostructures have different preferred growth directions: NCs have (111) faces, NBs are predominantly (200), and NWs are predominantly (110). We end the review by discussing the current shortcomings of HW-CVD growth of In2O3 nanostructures. PACS 61.46.-w; 61.82.Rx; 73.31.Hb; 81.02.-b  相似文献   

6.
The ZnO nanobelts were synthesized by a hydrothermal method. The XRD spectrum indicates that the sample is wurtzite (hexagonal) structured ZnO with lattice constants of , . SEM and TEM images show the nanobelts to have lengths of 10-20 μm, widths of 50-500 nm, thicknesses of about 30-60 nm, and growth direction of [0001]. Gas sensitivity experiments on ZnO nanobelts were carried out under different temperatures. The results indicated high sensitivities with an operating temperature of only 220 °C for the oxidative gas O2, and 305 °C for the gas N2. The mechanism of gas sensitive effects is analyzed in detail.  相似文献   

7.
Nitrogen-rich g-C3N4 nanobelts were successfully synthesized via pyrolysis of melamine (C3N6H6). The as-synthesized nanobelts are structurally uniform, and each belt is uniform in width and thickness along its length direction. The typical width is in the range of 600 nm and 1.5 μm, respectively. The typical length of belts is in the range of several hundreds of micrometers; some of them even have lengths on the order of millimeters. The structure and morphology were researched by XRD, SEM, TEM, CEA, XPS, FTIR, and TG measurements. The theoretical FTIR spectra are calculated to compare with experiment value. It is found that the NH2 edges in the nanobelts are precisely for the reason of rich nitrogen. The photoluminescence (PL) spectrum was carried out. Two peaks at 443 and 500 nm were observed in the spectrum. In addition, a possible growth mechanism is also inferred by principle of VLS.  相似文献   

8.
Beta-gallium oxide (β-Ga2O3) nanobelts were synthesized through microwave plasma chemical vapor deposition (MPCVD) of liquid-phase gallium containing H2O in Ar atmosphere using silicon as the substrate. Unlike the common microwave plasma method, the H2O, not mixture of the gas, was employed to synthesize the nanostructures. β-Ga2O3 nanobelts prepared by MPCVD have not been reported. The thickness of β-Ga2O3 nonobelts was 20–30 nm and length of them was tens to hundreds of microns. The morphology and structure of the products were analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Possible growth mechanisms of the β-Ga2O3 nanobelts are briefly discussed.  相似文献   

9.
In the present work, high surface area mesoporous cobalt oxide (Co3O4) nanobelts have been synthesized by thermal treatment of cobalt hydroxide carbonate (CHC) precursors. CHC nanobelts were prepared by a facile hydrothermal method. Control experiments with variations in reaction time, solvent and different cobalt source revealed that temperature and sulfates are key factors in determining the formation of CHC nanobelts. Scanning electron microscopy and transmission electron microscopy images showed that the Co3O4 nanobelts consisted of mesoporous nanobelts with the average width of 40 nm. Brunauer–Emmett–Teller (BET) gas adsorption measurement further indicated that the products presented a rather large surface area (172.09 m2 g?1).  相似文献   

10.
Nanostructured zinc oxide (ZnO) nanobelts and aluminum oxide (Al2O3) nanoribbons have been grown successfully from the vapor phase. XRD results confirmed the purity and the high quality of the formed crystalline materials. TEM images showed that ZnO nanostructures grew in the commonly known tetrapod structure with nanobelts separated from the tetrapods with an average width range of 10–30 nm and a length of about 500 nm. Al2O3 nanostructures grew in the form of nanoribbons with an average width range of 20–30 nm and a length of up to 1 μm. The catalytic oxidation of CO gas into CO2 gas over the synthesized nanostructures is also reported. Higher catalytic activity was observed for Pd nanoparticles loaded on the ZnO nanobelts (100% conversion at 270 °C) and Al2O3 nanoribbons (100% conversion at 250 °C). The catalytic activity increased in the order Cu < Co < Au < Pd for the metal-loaded nanostructures. The preparation methods could be applied for the synthesis of novel nanostructures of various materials with novel properties resulting from the different shapes and morphologies.  相似文献   

11.
The tunable growth of In-doped Ga2O3 (Ga2O3:In) and Ga-doped In2O3 (In2O3:Ga) nanowires (NWs) on Au-coated Si substrates was achieved by modulating the amount of water vapor in flowing Ar at 700–750 °C via carbothermal reduction of Ga2O3/In2O3 powders with a fixed weight ratio. In Ar, only the Ga2O3:In NWs were grown, while in wet Ar the In2O3:Ga NWs were synthesized instead. The Ga concentration in In2O3 NWs decreased with the increment of water vapor in flowing Ar. The growth of both Ga2O3:In and In2O3:Ga NWs followed the vapor–liquid–solid process. The In and Ga doping induced a redshift and a blueshift in the optical bandgaps of Ga2O3 NWs and In2O3 NWs, respectively. The growth mechanisms and optical properties of Ga2O3:In and In2O3:Ga NWs were discussed.  相似文献   

12.
We have investigated the effect of growth temperature on structural morphology and photoluminescence (PL) properties of as-synthesized gallium oxide (Ga2O3) nanostructures. The products consisted of Ga2O3 nanobelts and nanosheets (i.e. wider nanobelts), which had monoclinic crystalline structures. The average width of structures grown at 1000 °C was relatively greater than those at 800 °C, revealing that higher temperature favored the formation of nanosheets. PL measurements of 800 °C- and 1000 °C-grown samples indicated that both samples exhibited a broad emission band peaked around the blue-light region, while only the 800 °C-grown sample showed a red peak. PACS 81.07.-b; 81.05.Je; 61.10.Nz; 68.37.Hk; 68.37.Lp  相似文献   

13.
Uniform α-MoO3 nanobelts were successfully synthesized by the hydrothermal process at 180°C for 20 h of the acidic solutions with different pH values of 0–0.75, adjusted using HCl (conc.). XRD and SEM results revealed that the pH of the precursor solutions played an important role in the phase, impurities, and morphology of the products. At the pH=0, the perfect α-MoO3 nanobelts with a few tens of microns long were synthesized. By the TEM characterization, orthorhombic MoO3 has a distinctive layered structure along the [010] direction, consisting of distorted MoO6 octahedrons connected by common corners along the [100] direction and common edges along the [001] direction. The electrochemical measurement showed that the α-MoO3 nanobelts have high specific charge capacity.  相似文献   

14.
Laser-ablated Co-doped In2O3 thin films were fabricated under various growth conditions on R-cut Al2O3 and MgO substrates. All Co:In2O3 films are well-crystallized, single phase, and room temperature ferromagnetic. Co atoms were well substituted for In atoms, and their distribution is greatly uniform over the whole thickness of the films. Films grown at 550 °C showed the largest magnetic moment of about 0.5 μB/Co, while films grown at higher temperatures have magnetic moments of one order smaller. The observed ferromagnetism above room temperature in Co:In2O3 thin films has confirmed that doping few percent of magnetic elements such as Co into In2O3 could result in a promising magnetic material.  相似文献   

15.
Oxygen-deficient (OD) and nearly stoichiometric (NST) ZnO and In2O3 nanowires/nanoparticles were synthesized by chemical vapor deposition on Au-coated silicon substrates. The OD ZnO and OD In2O3 nanowires were synthesized at 750 and 950°C, respectively, using Ar flow at ambient pressure. A mixture of flowing Ar and O2 was used for synthesizing NST ZnO nanowires and NST In2O3 nanoparticles. Growth of OD ZnO nanowires and NST In2O3 nanoparticles was found to be via a vapor–solid (VS) mechanism and the growth of NST ZnO nanowires was via a vapor–liquid–solid mechanism (VLS). However, it was uncertain whether the growth of OD In2O3 nanowires was via a VS or VLS mechanism. The optical constants, thickness and surface roughness of the prepared nanostructured films were determined by spectroscopic ellipsometry measurements. A three-layered model was used to fit the calculated data to the experimental ellipsometric spectra. The refractive index of OD ZnO, NST ZnO nanowires and NST In2O3 nanoparticles films displayed normal dispersion behavior. The calculated optical band gap values for OD ZnO, NST ZnO, OD In2O3 nanowires and NST In2O3 nanoparticles films were 3.03, 3.55, 2.81 and 3.52?eV, respectively.  相似文献   

16.
CuInSe2/In2O3 structures were formed by depositing CuInSe2 films by stepwise flash evaporation onto In2O3 films, which were grown by DC reactive sputtering of In target in presence of (Ar+O2) gas mixture. Phase purity of the CuInSe2 and In2O3 films was confirmed by Transmission Electron Microscopy (TEM) studies. X-ray diffraction (XRD) results on CuInSe2/In2O3/glass structures showed sharp peaks corresponding to (112) plane of CuInSe2 and (222) plane of In2O3. Rutherford Backscattering Spectrometry (RBS) investigations were carried out on CuInSe2/In2O3/Si structures in order to characterize the interface between In2O3 and CuInSe2. The results show that the CuInSe2 films were near stoichoimetric and In2O3 films had oxygen deficient composition. CuInSe2/In2O3 interface was found to include a ∼20 nm thick region consisting of copper, indium and oxygen. Also, the In2O3/Si interface showed the formation of ∼20 nm thick region consisting of silicon, indium and oxygen. The results are explained on the basis of diffusion/reaction taking place at the respective interfaces.  相似文献   

17.
以铁箔为原材料和基片,通过控制热氧化过程中的宏观实验条件(载气流量及其组分、压强、温度分布和反应时间等),实现了α-Fe2O3一维纳米结构的可控生长,获得了大面积(10mm×10mm)、单分散性好、沿[110]方向生长的α-Fe2O3纳米带或纳米线阵列. 对不同宏观实验条件下所制备的样品进行形貌和晶格结构表征和分析,认为热氧化过程中α-Fe2O3一维纳米结构的生长遵循类似气- 关键词: 2O3')" href="#">α-Fe2O3 一维纳米结构 热氧化法  相似文献   

18.
Ordered and perpendicular columnar arrays of In2O3 were synthesized on conducting ITO electrode by a simple glancing angle deposition (GLAD) technique. The as-deposited In2O3 columns were investigated by field emission gun-scanning electron microscope (FEG-SEM). The average length and diameter of the columns were estimated ~400 nm and ~100 nm, respectively. The morphology of the structure was examined by transmission electron microscopy (TEM). X-ray diffraction (XRD) analysis shows the polycrystalline nature of the sample which was verified by selective area electron diffraction (SAED) analysis. The growth mechanism and optical properties of the columns were also discussed. Optical absorption shows that In2O3 columns have a high band to band transition at ~3.75 eV. The ultraviolet and green emissions were obtained from the In2O3 columnar arrays. The P-N junction was formed between In2O3 and P-type Si substrate. The GLAD synthesized In2O3 film exhibits low current conduction compared to In2O3 TF. However, the Si/GLAD-In2O3 detector shows ~1.5 times enhanced photoresponsivity than that of Si/In2O3 TF.  相似文献   

19.
Only a small amount (≤3.5 mol%) of Ge can be doped in Ga2O3, Ga1.4In0.6O3 and In2O3 by means of solid state reactions at 1400 °C. All these samples are optically transparent in the visible range, but Ge-doped Ga2O3 and Ga1.4In0.6O3 are insulating. Only Ge-doped In2O3 exhibits a significant decrease in resistivity, the resistivity decreasing further on thermal quenching and H2 reduction. The resistivity of 2.7% Ge-doped In2O3 after H2 reduction shows a metallic behavior, and a resistivity of ~1 mΩ cm at room temperature, comparable to that of Sn-doped In2O3.  相似文献   

20.
Ga2(1−x)In2xO3 thin films with different indium content x [In/(Ga + In) atomic ratio] were prepared on α-Al2O3 (0 0 0 1) substrates by the metal organic chemical vapor deposition (MOCVD). The structural and optical properties of the Ga2(1−x)In2xO3 films were investigated in detail. Microstructure analysis revealed that the film deposited with composition x = 0.2 was polycrystalline structure and the sample prepared with x up to 0.8 exhibited single crystalline structure of In2O3. The optical band gap of the films varied with increasing Ga content from 3.72 to 4.58 eV. The average transmittance for the films in the visible range was over 90%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号