首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The wetting behavior of water droplets on periodically structured hydrophobic surfaces was investigated. The effect of structure geometry, roughness, and relative pore fraction on the contact angles was investigated experimentally for droplets of size comparable to the size of the structures. It was found that surface geometry may induce a transition from groove-filling and Wenzel-like behavior to nonfilling of surface grooves and consequential Cassie-Baxter behavior. Numerical calculations of the free energy of these systems suggest that the equilibrium behavior is in line with the experimental observations. The observations may serve as guidelines for the design of surfaces with the desired wetting behavior.  相似文献   

3.
The underlying mechanisms of stability, metastability, or instability of the Cassie-Baxter and Wenzel wetting modes and their transitions on superhydrophobic surfaces decorated with periodic micropillars are quantitatively studied in this article. Hydraulic pressure, which may be generated by the water-air interfacial tension of water droplets or external factors such as raining impact, is shown to be a key to understanding these mechanisms. A detailed transition process driven by increasing hydraulic pressure is numerically simulated. The maximum sustainable or critical pressure of the Cassie-Baxter wetting state on a pillarlike microstructural surface is formulated for the first time in a simple, unified, and precise form. This analytic result reveals the fact that reducing the microstructural scales (e.g., the pillars' diameters and spacing) is probably the most efficient measure needed to enlarge the critical pressure significantly. We also introduce a dimensionless parameter, the pillar slenderness ratio, to characterize the stability of either the Cassie-Baxter or the Wenzel wetting state and show that the energy barrier for transitioning from the Cassie-Baxter to the Wenzel wetting mode is proportional to both the slenderness ratio and the area fraction. Thus, the Cassie-Baxter wetting mode may collapse under a hydraulic pressure lower than the critical one if the slenderness ratio is improperly small. This quantitative study explains fairly well some experimental observations of contact angles that can be modeled by neither Wenzel nor Cassie-Baxter contact angles and eventually leads to our proposals for a mixed (or coexisting) wetting mode.  相似文献   

4.
We have investigated the thickness and surface structure of surface freezing films in Ga-Bi and Ga-Pb alloys over a wide temperature range between room temperature and the respective surface freezing transitions by x-ray photoelectron spectroscopy (XPS) and scanning tunnelling microscopy (STM). For the example of a Ga-Bi alloy dilute in Bi, XPS measurements show that the surface freezing film has a nearly constant value of approximately 25 A between the surface freezing temperature of 130 degrees C and room temperature if the sample is cooled slowly (5 Kh). On heating to 130 degrees C the film thickness exhibits a clear hysteresis on melting. On quenching the alloy sample (>100 Kh) the film thickness increases by almost a factor of 10. These observations indicate that the surface freezing films are metastable. The surface structure of the surface freezing films of various Ga-rich Ga-Bi and Ga-Pb alloys has been probed for the first time by STM at different temperatures below and above the bulk eutectic point. Atomically resolved STM images show the surface structures of pure Bi (0001) and Pb (111), respectively, at room temperature. On heating above the eutectic temperature the surface structure of the films does not change significantly as judged from the size and thickness of Pb or Bi terraces. These observations together with the film thickness variation with temperature indicate that the surface freezing films behave like a metastable independent surface phase. These results together with the wetting characteristics of these alloys suggest that surface freezing in these systems is a first order surface phase transition between wetting and metastable surface freezing films. The energy barrier for nucleation is strongly reduced due to a lowering of the interfacial energy if the nucleus is completely immersed in the respective wetting layer.  相似文献   

5.
In this work, for the first time, a dynamic electrical control of the wetting behavior of liquids on nanostructured surfaces, which spans the entire possible range from the superhydrophobic behavior to nearly complete wetting, has been demonstrated. Moreover, this kind of dynamic control was obtained at voltages as low as 22 V. We have demonstrated that the liquid droplet on a nanostructured surface exhibits sharp transitions between three possible wetting states as a function of applied voltage and liquid surface tension. We have examined experimentally and theoretically the nature of these transitions. The reported results provide novel methods of manipulating liquids at the microscale.  相似文献   

6.
Chemically structured surfaces are discussed which consist of patterns of lyophilic and lyophobic surface domains. Wetting layers on top of these surfaces attain a variety of morphologies and undergo morphological wetting transitions. One convenient way to explore these transitions experimentally is by changing the total volume of the wetting layer.  相似文献   

7.
Ellipsometry, surface tensiometry, and contact-angle measurement have been used to study the transition between partial wetting and pseudo-partial wetting of surfactant solutions by alkanes. In the partial wetting regime, the air-water surface tension is the same with and without alkane. In the pseudo-partial wetting regime, the air-water surface tension is lowered by the presence of alkane, showing that oil is solubilised into the surfactant monolayer. A discontinuous change in the coefficient of ellipticity with increasing surfactant concentration provides unequivocal evidence for the first-order nature of the wetting transitions. Ellipsometry has been used to explore the generality of wetting transitions of alkanes (dodecane, hexadecane, and squalane) on surfactant solutions [dodecyltrimethylammonium bromide, tetredecyltrimethylammonium bromide, dibucaine hydrochloride, and Aerosol OT (AOT)]. Of the systems studied, only hexadecane on AOT solutions did not show a wetting transition. Excess alkane remains as a lens on the surface of the surfactant solutions at all concentrations, but the contact angle is a minimum at the wetting transition. A semiquantitative model for the variation of the contact angle with surfactant concentration is provided.  相似文献   

8.
Nonadhesive and water-repellent surfaces are required for many tribological applications. We study mechanisms of wetting of patterned superhydrophobic Si surfaces, including the transition between various wetting regimes during microdroplet evaporation in environmental scanning electron microscopy (ESEM) and for contact angle and contact angle hysteresis measurements. Wetting involves interactions at different scale levels: macroscale (water droplet size), microscale (surface texture size), and nanoscale (molecular size). We propose a generalized formulation of the Wenzel and Cassie equations that is consistent with the broad range of experimental data. We show that the contact angle hysteresis involves two different mechanisms and how the transition from the metastable partially wetted (Cassie) state to the homogeneously wetted (Wenzel) state depends upon droplet size and surface pattern parameters.  相似文献   

9.
A density functional approach is applied to investigate the effect of molecular structure on wetting behavior of water+amphiphile mixtures. The interaction-site model is employed to describe isomeric amphiphile structures. The hydrogen bonding between water and amphiphile is mimicked by energy enhancement according to specific molecular orientation. The calculations show that these systems exhibit Cahn-type criticality-related wetting transitions and pronounced adsorption behavior difference between isomeric systems. Excellent qualitative agreements with experiments are achieved.  相似文献   

10.
11.
12.
Surfaces may be rendered superhydrophobic by engineering the surface morphology to control the extent of the liquid-air interface and by the use of low-surface-energy coatings. The droplet state on a superhydrophobic surface under static and dynamic conditions may be explained in terms of the relative magnitudes of the wetting and antiwetting pressures acting at the liquid-air interface on the substrate. In this paper, we discuss the design and fabrication of hollow hybrid superhydrophobic surfaces which incorporate both communicating and noncommunicating air gaps. The surface design is analytically shown to exhibit higher capillary (or nonwetting) pressure compared to solid pillars with only communicating air gaps. Six hybrid surfaces are fabricated with different surface parameters selected such that the Cassie state of a droplet is energetically favorable. The robustness of the surfaces is tested under dynamic impingement conditions, and droplet dynamics are explained using pressure-based transitions between Cassie and Wenzel states. During droplet impingement, the effective water hammer pressure acting due to the sudden change in the velocity of the droplet is determined experimentally and is found to be at least 2 orders of magnitude less than values reported in the literature. The experiments show that the water hammer pressure depends on the surface morphology and capillary pressure of the surface. We propose that the observed reduction in shock pressure may be attributed to the presence of air gaps in the substrate. This feature allows liquid deformation and hence avoids the sudden stoppage of the droplet motion as opposed to droplet behavior on smooth surfaces.  相似文献   

13.
Considerable effort has been expended on theoretical studies of superhydrophobic surfaces with two-tier (micro and nano) roughness, but experimental studies are few due to the difficulties in fabricating such surfaces in a controllable way. The objective of this work is to experimentally study the wetting and hydrophobicity of water droplets on two-tier rough surfaces for comparison with theoretical analyses. To compare wetting on micropatterned silicon surfaces with wetting on nanoscale roughness surfaces, two model systems are fabricated: carbon nanotube arrays on silicon wafers and carbon nanotube arrays on carbon nanotube films. All surfaces are coated with 20 nm thick fluorocarbon films to obtain low surface energies. The results show that the microstructural characteristics must be optimized to achieve stable superhydrophobicity on microscale rough surfaces. However, the presence of nanoscale roughness allows a much broader range of surface design criteria, decreases the contact angle hysteresis to less than 1 degrees , and establishes stable and robust superhydrophobicity, although nanoscale roughness could not increase the apparent contact angle significantly if the microscale roughness dominates.  相似文献   

14.
In this work, we have studied superhydrophilic and superhydrophobic transitions on the vertically aligned multiwalled carbon nanotube (VACNT) surfaces. As-grown, the VACNT surfaces were superhydrophobic. Pure oxygen plasma etching modified the VACNT surfaces to generate superhydrophilic behavior. Irradiating the superhydrophilic VACNT surfaces with a CO2 laser (up to 50?kW?cm?2) restored the superhydrophobicity to a level that depended on the laser intensity. Contact angle and surface energy measurements by the sessile drop method were used to examine the VACNT surface wetting. X-ray photoelectron spectroscopy (XPS) showed heavy grafting of the oxygen groups onto the VACNT surfaces after oxygen plasma etching and their gradual removal, which also depended on the CO2 laser intensity. These results show the great influence of polar groups on the wetting behavior, with a strong correlation between the polar part of the surface energy and the oxygen content on the VACNT surfaces. In addition, the CO2 laser treatment created an interesting cage-like structure that may be responsible for the permanent superhydrophobic behavior observed on these samples.  相似文献   

15.
Contact angle measurements for three n-alkanes, heptane, octane, and nonane, on two different self-assembled surfaces (SAM) are reported as a function of drop size. These liquids all formed low contact angles (below 20 degrees ); the measurements were performed using an accurate method for systems with low contact angle, ADSA-D. The observed drop size dependence of the contact angles was interpreted using the modified Young equation. It was concluded that the observed drop size dependence of contact angles was due to line tension. The choice of systems also provided the opportunity to examine the behavior of the line tension for systems near wetting (i.e., low contact angles). It was determined that the line tension is positive and ranges from below 10(-7) to just below 10(-6) J/m for the systems studied; the observations suggested that the line tension decreases as the contact angle decreases and likely vanishes at complete wetting.  相似文献   

16.
Wetting and surface forces   总被引:1,自引:0,他引:1  
In this review we discuss the fundamental role of surface forces, with a particular emphasis on the effect of the disjoining pressure, in establishing the wetting regime in the three phase systems with both plane and curved geometry. The special attention is given to the conditions of the formation of wetting/adsorption liquid films on the surface of poorly wetted substrate and the possibility of their thermodynamic equilibrium with bulk liquid. The calculations of contact angles on the basis of the isotherms of disjoining pressure and the difference in wettability of flat and highly curved surfaces are discussed. Mechanisms of wetting hysteresis, related to the action of surface forces, are considered.  相似文献   

17.
We investigate in this paper the influence of wetting films on the adhesion forces between macroscopic solid surfaces connected by a liquid bridge. We show that the capillary forces are dependent on the interactions governing the wetting layers, and that those interactions may be determined from the measurement of the capillary force in the presence of a condensable vapor. We illustrate those results with a surface force apparatus experiment where the capillary force between high-energy surfaces is measured for different liquid pressures.  相似文献   

18.
Wetting transitions were studied with vertically-vibrated drops on various artificial and natural rough substrates. Alternative pathways of wetting transitions were observed. The model of wetting transition is presented. Multiple minima of the Gibbs free energy of a drop deposited on a rough surface explain alternative pathways of wetting transitions. We demonstrate that a wetting transition occurs when the constant force resulting from vibrations, Laplace and hydrostatic pressure acts on the triple line. It is shown that the final wetting states are mainly the Cassie impregnating wetting state with water penetrating the pores in the outer vicinity of the droplet or the Wenzel state with water inside the pores under the droplet whereas the substrate ahead the drop is dry.  相似文献   

19.
Surface wetting on polyelectrolyte multilayers (PEMs), prepared by alternating deposition of polydiallyldimethylammonium chloride (PDDA) and poly(styrene sulfonate) (PSS), was investigated mainly in water‐solid‐oil systems. The surface‐wetting behavior of as‐prepared PEMs was well correlated to the molecular structures of the uncompensated ionic groups on the PEMs as revealed by sum frequency generation vibrational and X‐ray photoelectron spectroscopies. The orientation change of the benzenesulfonate groups on the PSS‐capped surfaces causes poor water wetting in oil or air and negligible oil wetting in water, while the orientation change of the quaternized pyrrolidine rings on the PDDA‐capped surfaces hardly affects their wetting behavior. The underwater oil repellency of PSS‐capped PEMs was successfully harnessed to manufacture highly efficient filters for oil‐water separation at high flux.  相似文献   

20.
A typical superhydrophobic (ultrahydrophobic) surface can repel water droplets from wetting itself, and the contact angle of a water droplet resting on a superhydrophobic surface is greater than 150°, which means extremely low wettability is achievable on superhydrophobic surfaces. Many superhydrophobic surfaces (both manmade and natural) normally exhibit micro- or nanosized roughness as well as hierarchical structure, which somehow can influence the surface's water repellence. As the research into superhydrophobic surfaces goes deeper and wider, it is becoming more important to both academic fields and industrial applications. In this work, the most recent progress in preparing manmade superhydrophobic surfaces through a variety of methodologies, particularly within the past several years, and the fundamental theories of wetting phenomena related to superhydrophobic surfaces are reviewed. We also discuss the perspective of natural superhydrophobic surfaces utilized as mimicking models. The discussion focuses on how the superhydrophobic property is promoted on solid surfaces and emphasizes the effect of surface roughness and structure in particular. This review aims to enable researchers to perceive the inner principles of wetting phenomena and employ suitable methods for creation and modification of superhydrophobic surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号