首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo diffusion tensor imaging (DTI) of rat cervical and thoracic spinal cord was performed using a three-element phased array coil at 7 T. The magnetic field was shimmed over the spinal cord in real time using an in-house developed automatic algorithm. Echo planar imaging (EPI)-based diffusion-weighted images (DWIs) were acquired with 21 gradient encoding directions. The DWIs were tensor encoded, and diffusion tensor metrics, fractional anisotropy (FA), mean diffusivity (MD), longitudinal diffusivity (λ0) and transverse diffusivity (λ) were determined for both white matter (WM) and gray matter (GM). The results on six normal rats indicated no significant differences in the diffusion tensor metrics between thoracic and cervical regions. However, the DTI-derived metrics in cervical spinal cord from our study are somewhat different from the published results in rats. The possible reasons for these differences are suggested.  相似文献   

2.
The value of apparent diffusion coefficient (ADC) measurements in intervertebral disc has been studied because ADC provides an estimate of free diffusion of unbound water and could be used as a quantitative tool to estimate degenerative changes. However, the challenging nature of diffusion imaging of spine and limited numbers of subjects in earlier studies has produced contradictory findings. We aimed to determine the relation between ADC and visual degenerative changes in lumbar intervertebral discs in a sufficiently large homogeneous study group. Lumbar spines of 228 volunteer middle-aged men were MR imaged at 1.5 T including anatomic and diffusion-weighted imaging. ADC values, T2 signal intensity and height, and width of the three lowest lumbar intervertebral discs were measured and disc degeneration visually graded. The calculated average ADC of 530 measured discs was 2.01×10−3 mm2/s±0.29 (±S.D.). The reduction in ADC between visually normal and moderately degenerated discs was 4%. Severely degenerated discs showed 5% larger ADC values than normal discs, presumably due to free water in cracks and fissures of those discs. T2 signal intensity of the disc was significantly correlated with the ADC values, whereas other measured parameters did not show correlation. There was no evident difference in ADC between the studied anatomic lumbar levels. Because there is considerable overlap between ADC values of normal and degenerated discs, we conclude that ADC measurements of intervertebral discs, at least with current technology, have limited clinical value.  相似文献   

3.
The purpose of this study was to determine correlations among disease progression, diffusion abnormalities in the posterior cingulum and hippocampal volume in patients with Alzheimer's disease (AD). We studied 25 AD patients by neuropsychological testing, including the Mini-Mental State Examination (MMSE), and by magnetic resonance imaging, including diffusion tensor imaging (DTI) and high-resolution three-dimensional T1-weighted imaging. The MMSE score was used as an indicator of disease progression. Diffusion tensor tractography of the posterior cingulum was generated from the DTI; mean diffusivity (MD) and fractional anisotropy (FA) were measured in co-registered voxels along the posterior cingulum. Hippocampal volume was measured using automated voxel-based morphometry. The relationships among MMSE score, hippocampal volume and MD and FA of the posterior cingulum were evaluated by bivariate correlation analysis. MD in the posterior cingulum correlated significantly with the MMSE score. No significant correlation was seen between FA and MMSE score and between hippocampal volume and MMSE score, FA or MD. Our results suggest that MD in the posterior cingulum is a more sensitive indicator of progression of AD than FA of the posterior cingulum and hippocampal volume.  相似文献   

4.
Diffusion tensor imaging (DTI) of the lumbar spine could improve diagnostic specificity. The purpose of this work was to determine the feasibility of and to validate DTI with single-shot fast spin-echo (SSFSE) for lumbar intervertebral discs at 1.5 and 3 T. Six normal volunteers were scanned with DTI-SSFSE using an eight- and a three-b-value protocol at 1.5 and 3 T, respectively. Apparent diffusion coefficient (ADC) values were computed and validated based on those obtained at 1.5 T from corresponding diffusion tensor scans using line scan diffusion imaging (LSDI), a technique that has been previously validated for use in the spine. Pearson correlation coefficients for LSDI and DTI-SSFSE ADC values were .88 and .89 for 1.5 and 3 T, respectively, with good quantitative agreement according to the Bland-Altman method. Results indicate that DTI-SSFSE is a candidate as a clinical sequence for obtaining diffusion tensor images of the lumbar intervertebral discs with scan times shorter than 4 min.  相似文献   

5.
PURPOSE: The purpose of this study was to determine a suitable registration algorithm for diffusion tensor imaging (DTI) using conventional preprocessing tools [statistical parametric mapping (SPM) and automated image registration (AIR)] and to investigate how anisotropic indices for clinical assessments are affected by these distortion corrections. MATERIALS AND METHODS: Brain DTI data from 15 normal healthy volunteers were used to evaluate four spatial registration schemes within subjects to correct image distortions: noncorrection, SPM-based affine registration, AIR-based affine registration and AIR-based nonlinear polynomial warping. The performance of each distortion correction was assessed using: (a) quantitative parameters: tensor-fitting error (Ef), mean dispersion index (MDI), mean fractional anisotropy (MFA) and mean variance (MV) within 11 regions of interest (ROI) defined from homogeneous fiber bundles; and (b) fiber tractography through the uncinate fasciculus and the corpus callosum. Fractional anisotropy (FA) and mean diffusivity (MD) were calculated to demonstrate the effects of distortion correction. Repeated-measures analysis of variance was used to investigate differences among the four registration paradigms. RESULTS: AIR-based nonlinear registration showed the best performance for reducing image distortions with respect to smaller Ef (P<.02), MDI (P<.01) and MV (P<.01) with larger MFA (P<.01). FA was decreased to correct distortions (P<.0001) whether the applied registration was linear or nonlinear and was lowest after nonlinear correction (P<.001). No significant differences were found in MD. CONCLUSION: In conventional DTI processing, anisotropic indices of FA can be misestimated by noncorrection or inappropriate distortion correction, which leads to an erroneous increase in FA. AIR-based nonlinear distortion correction would be required for a more accurate measurement of this diffusion parameter.  相似文献   

6.
Diffusion tensor imaging (DTI) was performed on 25 patients with neurocysticercosis (NCC). The aim of this study was to investigate the changes in DTI measures during the evolutionary course of NCC lesions from vesicular to calcified stage in the brain. DTI measures were quantified from the NCC lesions of all patients. On the basis of conventional imaging findings, NCC lesions were classified into vesicular, vesicular colloidal, granular nodular and calcified stages. Significant inverse correlation was observed between the evolutionary stage of NCC lesion and mean diffusivity (MD; r=−0.748, P<0.001) and spherical anisotropy (CS; r=−0.585, P<.001) values. Significant direct correlations were observed between evolutionary stages of NCC lesion and mean fractional anisotropy (FA; r=0.575, P<0.001), linear anisotropy (CL; r=0.478, p<0.001) and planar anisotropy (CP; r=0.561, p<0.001) values. Successive decrease in MD values calculated from NCC lesions was observed, moving from vesicular to granular nodular stage. On FA, CL and CP maps, a significant increase in signal intensity value was observed in calcified as compared to other stages. We conclude that DTI measures may indicate the evolutionary changes in NCC from vesicular to calcified stage.  相似文献   

7.
Intervertebral disc (IVD) degeneration is a complex process characterized by biochemical and structural changes in both the nucleus pulposus and the anulus fibrosus. In this study, we were able to obtain in vivo magnetic resonance (MR) images of the rabbit spine, with several MR imaging (MRI) contrasts (ρ, T1 and T2). We quantified several parameters (T2, apparent diffusion coefficient, disc height and area) to differentiate between healthy and degenerative IVDs and to characterize the degeneration process. To our knowledge, there has not been any previous in vivo study of rabbit IVDs at high-field MRI (9.4 T).A custom radio frequency (RF) coil for 9.4 T was designed to match rabbit IVD morphology, to study the degeneration in vivo on a model of human lumbar disease. Our new probe, a custom half-birdcage-type coil, obtains the necessary exploration depth while meeting the requirements for signal homogeneity and sensitivity of the study. This design addresses some of the difficulties with constructing RF coils at high field strengths.  相似文献   

8.
The purpose of this study was to determine whether proton magnetic resonance spectroscopy (PMRS) and diffusion tensor imaging (DTI) indices, fractional anisotropy (FA) and mean diffusivity (MD) can be used to distinguish brain abscess from cystic brain tumors, which are difficult to distinguish by conventional magnetic resonance imaging (MRI). Fifty-three patients with intracranial cystic mass lesions and 10 normal controls were studied. Conventional MRI, PMRS and DTI of all the patients were performed on a 1.5-T GE scanner. Forty patients were with brain abscess and 13 with cystic tumors. Cytosolic amino acids (AAs) were present in 32 of 40 brain abscess patients. Out of 13 patients with cystic tumors, lactate and choline were seen in 3 and only lactate was present in 10 patients on PMRS. All 40 cases of abscess had high FA, while all 13 cases of tumor cysts had high MD values. We conclude that FA measurements are more sensitive in predicting the abscess, while PMRS and MD are more specific in differentiating abscess from cystic tumors. We suggest that PMRS should be combined with DTI rather than with diffusion-weighted imaging as FA can be used as an additional parameter for separation of abscess from other cystic intracranial mass lesions.  相似文献   

9.
Age-related microstructural changes in brain white matter can be studied by utilizing indices derived from diffusion tensor imaging (DTI): apparent diffusion coefficient (ADC) and fractional anisotropy (FA). The objective of this study is to examine alterations in FA and ADC by employing exploratory voxel-based analysis (VBA) and region(s) of interest (ROI)-based analysis. A highly nonlinear registration algorithm was used to align the ADC and FA image volumes of different subjects to perform accurate voxel-level statistics for two age groups, as well as for hemispheric asymmetry for both age groups. VBA shows significant age-related decline in FA with frontal predominance (frontal white matter, and genu and anterior body of the corpus callosum), superior portions of a splenium and highly oriented fibers of the posterior limb of the internal capsule and the anterior and posterior limbs of the external capsule. Hemispheric asymmetry of FA, as assessed by VBA, showed that for the young-age group, significant right-greater-than-left asymmetry exists in the genu, splenium and body of the corpus callosum and that left-greater-than-right asymmetry exists in the anterior limb of the external capsule and in the posterior limb of the internal capsule, thalamus, cerebral peduncle and temporal-parietal regions. VBA of the hemispheric asymmetry of the middle-age group revealed much less asymmetry. Regions showing age-related changes and hemispheric asymmetry from VBA were, for a majority of the findings, in conformance with ROI analysis and with the known pattern of development and age-related degradation of fiber tracks. The study shows the feasibility of the VBA of DTI indices for exploratory investigations of subtle differences in population cohorts, especially when findings are not localized and/or known a priori.  相似文献   

10.

Introduction

Diffusion tensor imaging (DTI) reveals white matter pathology in patients with multiple sclerosis (MS). A recent non-Gaussian diffusion imaging technique, q-space imaging (QSI), may provide several advantages over conventional MRI techniques in regard to in vivo evaluation of the disease process in patients with MS. The purpose of this study is to investigate the use of root mean square displacement (RMSD) derived from QSI data to characterize plaques, periplaque white matter (PWM), and normal-appearing white matter (NAWM) in patients with MS.

Methods

We generated apparent diffusion coefficient (ADC) and fractional anisotropy (FA) maps by using conventional DTI data from 21 MS patients; we generated RMSD maps by using QSI data from these patients. We used the Steel–Dwass test to compare the diffusion metrics of regions of interest in plaques, PWM, and NAWM.

Results

ADC differed (P < 0.05) between plaques and PWM and between plaques and NAWM. FA differed (P < 0.05) between plaques and NAWM. RMSD differed (P < 0.05) between plaques and PWM, plaques and NAWM, and PWM and NAWM.

Conclusion

RMSD values from QSI may reflect microstructural changes and white-matter damage in patients with MS with higher sensitivity than do conventional ADC and FA values.  相似文献   

11.
Diffusion tensor imaging (DTI) studies of human ischemic stroke within 24 h of symptom onset have reported variable findings of changes in diffusion anisotropy. Serial DTI within 24 h may clarify these heterogeneous results. We characterized longitudinal changes of diffusion anisotropy by analyzing discrete ischemic white matter (WM) and gray matter (GM) regions during the hyperacute (2.5-7 h) and acute (21.5-29 h) scanning phases of ischemic stroke onset in 13 patients. Mean diffusivity (MD), fractional anisotropy (FA) and T2-weighted signal intensity were measured for deep and subcortical WM and deep and cortical GM areas in lesions outlined by a > or =30% decrease in MD. Average reductions of approximately 40% in relative (r) MD were observed in all four brain regions during both the hyperacute and acute phases post stroke. Overall, 9 of 13 patients within 7 h post symptom onset showed elevated FA in at least one of the four tissues, and within the same cohort, 11 of 13 patients showed reduced FA in at least one of the ischemic WM and GM regions at 21.5-29 h after stroke. The fractional anisotropy in the lesion relative to the contralateral side (rFA, mean+/-S.D.) was significantly elevated in some patients in the deep WM (1.10+/-0.11, n=4), subcortical WM (1.13+/-0.14, n=4), deep GM (1.07+/-0.06, n=1) and cortical GM (1.22+/-0.13, n=5) hyperacutely (< or =7 h); however, reductions of rFA at approximately 24 h post stroke were more consistent (rFA= 0.85+/-0.12).  相似文献   

12.

Objective

Magnetic resonance imaging (MRI) offers great potential as a sensitive and noninvasive technique for describing the alterations in mechanical properties, as shown in vitro on intervertebral disc (IVD) or cartilage tissues. However, in vivo, the IVD is submitted to complex loading stimuli. Thus, the present question focuses on the influence of the mechanical loading during an MRI acquisition on the relaxation times, magnetization transfer and diffusion parameters within the IVD.

Methods

An apparatus allowing the compression of isolated IVDs was designed and manufactured in acrylonitrile butadiene styrene. IVDs were dissected from fresh young bovine tail, measured for their thickness and submitted to compression just before the MRI acquisition. Six discs received 0% (platen positioned at the initial disc thickness), 5% (platen positioned at 95% of the initial disc thickness), 10%, 20% and 40% deformation. The MRI parameters were compared between the loading states using mean and standard deviation for T1 and T2, and matrix subtraction for Magnetization Transfer, fractional anisotropy and apparent diffusion coefficient.

Results

The compression of the IVD did not lead to any significant change of the MRI parameters, except for the diffusion that decreased in the direction of the compressive stress.

Discussion

This experimental in vitro study shows that multi-parametric MRI on isolated discs in vitro is not sensitive to compression or to the partial confined relaxation that followed the compression.  相似文献   

13.

Background and Purpose

Current approaches to diffusion tensor imaging (DTI) analysis do not permit identification of individual-level changes in DTI indices. We investigated the ability of wild bootstrapping analysis to detect subject-specific changes in brain white matter (WM) before and after sports-related concussion.

Materials and Methods

A prospective cohort study was performed in nine high school athletes engaged in hockey or football and six controls. Subjects underwent DTI pre- and postseason within a 3-month interval. One athlete was diagnosed with concussion (scanned within 72 h), and eight suffered between 26 and 399 subconcussive head blows. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in each WM voxel. Bootstrap samples were generated, and a permuted t test was used to compare voxel-wise FA/MD changes in each subject pre- vs. postseason.

Results

The percentage of WM voxels with significant (p<.05) pre–post FA changes was highest for the concussion subject (3.2%), intermediary for those with subconcussive head blows (mean 1.05%±.15%) and lowest for controls (mean 0.28%±.01%). Similarly, the percentage of WM voxels with significant MD changes was highest for the concussion subject (3.44%), intermediary for those with subconcussive head blows (mean 1.48%±.17%) and lowest for controls (mean 0.48%±.05%). Significantly changed FA and MD voxels colocalized in the concussion subject to the right corona radiata and right inferior longitudinal fasciculus.

Conclusions

Wild bootstrap analysis detected significantly changed WM in a single concussed athlete. Athletes with multiple subconcussive head blows had significant changes in a percentage of their WM that was over three times higher than controls. Efforts to understand the significance of these WM changes and their relationship to head impact forces appear warranted.  相似文献   

14.
Characterizing the diffusion properties of cortical tissue is complicated by intersubject variability in the relative locations of gyri and sulci. Here we extend methods of measuring the average diffusion properties of gyral and sulcal structures after they have been aligned to a common template of cortical surface anatomy. Diffusion tensor image (DTI) data were gathered from 82 young subjects and co-registered with high-resolution T1 images that had been inflated and co-registered to a hemispherically unified spherical coordinate system based on FreeSurfer. We analyzed fractional anisotropy (FA), mean diffusivity (MD) and the novel quantity of cortical primary diffusion direction (cPDD) at five surfaces parallel to the white/gray junction, spanning approximately 5 mm from the pial surface into white matter. FA increased with increasing depth, whereas MD and cPDD were reduced. There were highly significant and reliable regional differences in FA, MD and cPDD as well as systematic differences between cortical lobes and between the two hemispheres. The influence of nearby cortical spinal fluid (CSF), local cortical curvature and thickness, and sulcal depth was also investigated. We found that FA correlated significantly with cortical curvature and sulcal depth, while MD was strongly influenced by nearby CSF. The measurement of FA, MD and cPDD near the cortical surface clarifies the organization of fiber projections to and from the cortex.  相似文献   

15.
Although it is known that low signal-to-noise ratio (SNR) can affect tensor metrics, few studies reporting disease or treatment effects on fractional anisotropy (FA) report SNR; the implicit assumption is that SNR is adequate. However, the level at which low SNR causes bias in FA may vary with tissue FA, field strength and analytical methodology. We determined the SNR thresholds at 1.5 T vs. 3 T in regions of white matter (WM) with different FA and compared FA derived using manual region-of-interest (ROI) analysis to tract-based spatial statistics (TBSS), an operator-independent whole-brain analysis tool. Using ROI analysis, SNR thresholds on our hardware-software magnetic resonance platforms were 25 at 1.5 T and 20 at 3 T in the callosal genu (CG), 40 at 1.5 and 3 T in the anterior corona radiata (ACR), and 50 at 1.5 T and 70 at 3 T in the putamen (PUT). Using TBSS, SNR thresholds were 20 at 1.5 T and 3 T in the CG, and 35 at 1.5 T and 40 at 3 T in the ACR. Below these thresholds, the mean FA increased logarithmically, and the standard deviations widened. Achieving bias-free SNR in the PUT required at least nine acquisitions at 1.5 T and six acquisitions at 3 T. In the CG and ACR, bias-free SNR was achieved with at least three acquisitions at 1.5 T and one acquisition at 3 T. Using diffusion tensor imaging (DTI) to study regions of low FA, e.g., basal ganglia, cerebral cortex, and WM in the abnormal brain, SNR should be documented. SNR thresholds below which FA is biased varied with the analytical technique, inherent tissue FA and field strength. Studies using DTI to study WM injury should document that bias-free SNR has been achieved in the region of the brain being studied as part of quality control.  相似文献   

16.
磁共振扩散张量成像(DTI)是在扩散加权成像(DWI)基础上发展起来的一种新型技术,可以无创伤显示脑白质纤维,诊断脑白质病变. 但是由于各种原因,DTI一般只在超导高场磁共振成像(MRI)仪器上进行,这就限制了这一重要诊断手段临床应用的广泛性. 本文在低场磁共振成像系统上应用线扫描实现了扩散张量成像,并测量了健康志愿者大脑内主要解剖结构的表观扩散系数(ADC)和各项异性分数(FA),得到的数据与高场仪器上的相关数据比较是吻合的. 因此临床上使用在低场强上得到的DTI图像评价脑白质是可行的,而且通常在临床上这也是足够的.  相似文献   

17.
PurposeThis study aims to assess the usefulness of diffusion tensor imaging (DTI) as a noninvasive method for the evaluation of histological grade and lymph node metastasis in patients with oral carcinoma (OC).Materials and methodsThirty-six consecutive patients with histologically confirmed OC underwent examination by 3-T MRI. DTI was performed using a single-shot echo-planar imaging sequence with b values of 0 and 1000 s/mm2 and motion-probing gradients in 12 noncollinear directions. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) maps were compared with histopathological findings. The DTI parameters were correlated with the histological grade of the OCs based on the World Health Organization grading criteria and the presence or absence of lymph node metastasis.ResultsThe FA values (0.275 ± 0.058) of OC were significantly lower than those of normal tongue, muscle, and parotid glands (P < 0.001 for all), and the MD, AD, and RD values (1.220 ± 0.149, 1.434 ± 0.172, and 1.019 ± 0.165 × 10−3 mm2/s, respectively) were significantly higher than their respective normal values (P < 0.001 for all). Significant inverse correlations with histological grades were shown for FA, MD, AD, and RD values in OC patients (r = −0.862, r = −0.797, r = −0.747, and r = −0.844, respectively; P < 0.001 for all). In addition, there was a significant difference in the FA values of metastatic and nonmetastatic lymph nodes (0.186 vs. 0.276), MD (0.923 vs. 1.242 × 10−3 mm2/s), AD (1.246 vs. 1.621 × 10−3 mm2/s), and RD (0.792 vs. 1.100 × 10−3 mm2/s; P < 0.001 for all).ConclusionsDTI may be clinically useful for the noninvasive evaluation of histological grade and lymph node metastasis in OC patients.  相似文献   

18.
The objective of this study is to determine differential diagnostic value of diffusion tensor imaging (DTI) in high-grade brain astrocytomas, brain solitary metastases and brain abscesses. 53 patients with cerebral solitary lesions which showed ring enhancement on contrast-enhanced T 1-weighted images were enrolled in this study. Brain tissues were examined pathologically from 49 patients to confirm the cerebral occupational diseases. Four patients have been diagnosed with primary cancer plus brain solitary metastasis. DTI measurements were obtained from regions of interest placed on central cavity, white matter of the immediate peritumoral region (IPR) and cerebral white matter of the normal side. The cavity of high-grade astrocytoma and brain metastases displayed hypointense signals; most of the brain abscess cavities displayed high signal intensity except for one case with uneven signal intensity. Mean diffusivity (MD) and fractional anisotropy (FA) values could be used for differentiation between tumor and abscess in brain. The brain abscess cavities showed restricted diffusion and anisotropy [MD = (0.604 ± 0.13) × 10−3 mm2/s, FA = 0.185 ± 0.03], whereas the central portion of high-grade astrocytoma [MD = (2.76 ± 0.26) × 10−3 mm2/s, FA = 0.069 ± 0.02] and solitary brain metastases [MD = (2.82 ± 0.29) × 10−3 mm2/s, FA = 0.064 ± 0.02] showed unrestricted diffusion and isotropy. Brain abscess could be differentiated by MD and FA values in their cavities from brain tumors (P < 0.01). The IPRs were all depicted as hyperintense or isointense signals on diffusion-weighted imaging. The difference between FA values in the IPR of high-grade brain astrocytomas and other groups was statistically significant (P < 0.01). In conclusion, our results suggested the potential role of the cavity MD and FA values in the differential diagnoses of brain tumors and brain abscesses; meanwhile, high-grade astrocytomas could be distinguished from solitary metastases and abscesses by evaluating their corresponding FA values in the IPR on brain magnetic resonance imaging (MRI). Combined with conventional MRI, DTI may help radiologists to facilitate the differential diagnosis of ring-enhancing cerebral lesions in clinical practice.  相似文献   

19.

Purpose

The objective of this study was to evaluate diffusion anisotropy of the breast parenchyma and assess the range and repeatability of diffusion tensor imaging (DTI) parameters in normal breast tissue.

Materials and Methods

The study was approved by our institutional review board and included 12 healthy females (median age, 36 years). Diffusion tensor imaging was performed at 1.5 T using a diffusion-weighted echo planar imaging sequence. Diffusion tensor imaging parameters including tensor eigenvalues (λ1, λ2, λ3), fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were measured for anterior, central and posterior breast regions.

Results

Mean normal breast DTI measures were λ1=2.51×10−3 mm2/s, λ2=1.89×10−3 mm2/s, λ3=1.39×10−3 mm2/s, ADC=1.95±0.24×10−3 mm2/s and FA=0.29±0.05 for b=600 s/mm2. Significant regional differences were observed for both FA and ADC (P<.05), with higher ADC in the central breast and higher FA in the posterior breast. Comparison of DTI values calculated using b=0, 600 s/mm2 vs. b=0, 1000 s/mm2, showed significant differences in ADC (P<.001), but not FA. Repeatability assessment produced within-subject coefficient of variations of 4.5% for ADC and 11.4% for FA measures.

Conclusion

This study demonstrates anisotropy of water diffusion in normal breast tissue and establishes a normative range of breast FA values. Attention to the influence of breast region and b value on breast DTI measurements may be important for clinical interpretation and standardization of techniques.  相似文献   

20.
Keyhole diffusion tensor imaging (keyhole DTI) was previously proposed in cardiac imaging to reconstruct DTI maps from the reduced phase-encoding images. To evaluate the feasibility of keyhole DTI in brain imaging, keyhole and zero-padding DTI algorithms were employed on in vivo mouse brain. The reduced phase-encoding portion, also termed as the sharing rate, was varied from 50% to 90% of the full k-space. Our data showed that zero-padding DTI resulted in decreased fractional anisotropy (FA) and decreased mean apparent diffusion coefficient (mean ADC) in white matter (WM) regions. Keyhole DTI showed a better edge preservation on mean ADC maps but not on FA maps as compared to the zero-padding DTI. When increasing the sharing rate in keyhole approach, an underestimation of FA and an over- or underestimation of mean ADC were measured in WM depending on the selected reference image. The inconsistency of keyhole DTI may add a challenge for the wide use of this modality. However, with a carefully selected directive diffusion-weighted image to serve as the reference image in the keyhole approach, this study demonstrated that one may obtain DTI indices of reduced-encoding images with high consistency to those derived with full k-space DTI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号