共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
本文给出了基于神经网络信息融合的引信系统结构,对神经网络算法和信息融合算法在本系统的应用进行了探讨,给出了神经网络信息融合算法仿真方法并进行仿真,从而提供了引信系统的可行性和鲁棒性。 相似文献
3.
基于BP神经网络的传感器网络动态采样模型研究 总被引:2,自引:0,他引:2
能耗控制对于农业环境监测无线传感器网络系统具有重要意义。基于误差反向传播的多层前馈神经网络预测和阈值分析建立了一种土壤温度传感器网络动态采样模型,实现了基于土壤温度周期变化特征的采样频率实时调整方法,达到减少网络冗余数据,降低网络功耗的目的。以环境温度和空气相对湿度为BP神经网络实测输入,土壤温度为预测输出,通过判断输出是否进入阈值区间动态调整采样周期。仿真实验结果表明,对于具有周期性特点的土壤温度,BP网络模型对其预测值和实测值之间的均方根误差RMSE及绝对误差AE分别为0.83℃和0.54℃。相比于连续采样,阈值分析动态采样次数减少30%。 相似文献
4.
5.
智能灯光控制系统是智能家居控制系统的重要组成部分。在分析了目前智能灯光控制系统缺陷与不足的基础上,提出了BP神经网络在智能灯光控制系统的应用,将BP算法嵌入到智能灯光控制系统的数据处理模块,提高控制系统对于数据的处理能力。系统通过引入BP神经网络的自学习能力,改善了智能灯光控制系统智能化程度低的问题。通过实验分析,该系统能够提高智能灯光控制系统的智能性,给人们提供了一个舒适的居家灯光环境。同时,BP神经网络在智能灯光控制系统的应用,对于解决智能家居控制系统解决智能化程度低的问题也有一定的促进作用。 相似文献
6.
7.
8.
在分析反舰导弹比例导引控制规律的基础上,将无线传感器网络信息融合思想引入到比例导引优化辅助决策控制过程中,通过将无线传感器网络信息融合中的数据、特征、决策概念对应于比例导引的具体数学模型,构建了基于无线传感器网络的比例导引优化信息融合辅助决策架构;利用VB6.0语言对基于无线传感器网络辅助决策的反舰导弹优化信息融合制导控制规则进行了模拟仿真,命中距离缩短约37.1%,命中时间节省约10.9%;仿真实验结果实现了反舰导弹自适应优化比例系数的比例制导律,验证了该方法的有效性。 相似文献
9.
BP 神经网络越来越多地被应用于软测量建模中,与传统方法相比,BP神经网络进行信息处理可以减少数据的分析和建模工作,但也存在易于陷入局部最小值和初始权值随机选取的缺陷问题。为了解决传统BP神经网络存在的缺陷,论文中在数据预处理过程中引入主成分分析法(PCA),在BP网络输入权值时引入遗传算法(GA),最终达到弥补BP神经网络缺陷的目的;详细介绍了改进算法的流程与步骤,将改进的BP神经网络应用于航空液压油的软测量,先是对航空液压油软测量参数进行分析,包括辅助变量的选择和数据预处理,然后进行基于改进型BP神经网络的建模与仿真实验。实验结果表明,基于改进BP神经网络的航空液压油软测量效果优于传统神经网络,具有更强的泛化能力,因此可进行更广泛的应用。 相似文献
10.
研究了多传感器采样系统在发生一类典型故障情况下的分布式融合估计问题;首先,针对局部传感器,利用Kalman滤波获得的新息进行故障检测;然后在最小方差意义下发展了传感器故障在线递归估计方案;进一步将所获得的估计结果对故障传感器的测量值进行重构,并应用射影定理建立了局部传感器容错更新算法;最后基于线性最小方差融合原则给出了多传感器采样系统的分布式容错估计方案;相比于已有融合估计方法,所提方案不仅能及时检测传感器故障,并且能进一步充分利用故障传感器信息来提高估计精度;数值仿真验证了方法的有效性和优越性。 相似文献
11.
Dongyue Huo Yuyun Kang Baiyang Wang Guifang Feng Jiawei Zhang Hongrui Zhang 《Entropy (Basel, Switzerland)》2022,24(11)
The gearbox is an important component in the mechanical transmission system and plays a key role in aerospace, wind power and other fields. Gear failure is one of the main causes of gearbox failure, and therefore it is very important to accurately diagnose the type of gear failure under different operating conditions. Aiming at the problem that it is difficult to effectively identify the fault types of gears using traditional methods under complex and changeable working conditions, a fault diagnosis method based on multi-sensor information fusion and Visual Geometry Group (VGG) is proposed. First, the power spectral density is calculated with the raw frequency domain signal collected by multiple sensors before being transformed into a power spectral density energy map after information fusion. Second, the obtained energy map is combined with VGG to obtain the fault diagnosis model of the gear. Finally, two datasets are used to verify the effectiveness and generalization ability of the method. The experimental results show that the accuracy of the method can reach 100% at most on both datasets. 相似文献
12.
13.
基于可见光光谱和BP人工神经网络的冬小麦生物量估算研究 总被引:2,自引:0,他引:2
建立基于冬小麦冠层图像分析获取的冠层覆盖度和色彩指数的地上部生物量估算模型,以促进作物冠层图像分析技术和BP神经网络技术在冬小麦长势无损监测中的应用。六个施氮水平的田间试验条件下,在冬小麦拔节期,分四次采集冬小麦冠层图像,同步进行破坏性取样,测定冬小麦地上部生物量;分析了通过图像分析软件(利用微软Visual Basic软件开发)获取的冠层覆盖度和10种色彩指数与冬小麦地上部生物量的相关关系,以逐步回归和BP神经网络方法建立了冬小麦地上部生物量估算模型。结果表明,冬小麦地上部生物量与冠层覆盖度、饱和度和红光亮度值呈显著相关,其中,与冠层覆盖度间的相关性最强,且除亮度外,冠层覆盖度、色彩指数与地上部生物量间呈非线性相关。通过BP神经网络方法构建的模型相对于逐步回归模型,显著提高了冬小麦地上部生物量估算精度,均方根误差(RMSE)、相对均方根误差(RRMSE)更小,决定系数(R2)更大。 相似文献
14.
恒星的分类对了解恒星和星系形成与演化历史具有重要的研究价值。面对大型巡天计划及由此产生的海量数据,如何迅速准确地将天体自动分类显得尤为重要。通过对SDSS DR9的恒星光谱数据进行深度置信神经网络(DBN)、神经网络和支持向量机(SVM)等算法分类的对比,分析三种自动光谱分类方法在恒星分类上的适用性。首先利用上述三种方法对K,F恒星进行识别分类,然后再分别对K1,K3和K5次型和F2,F5,F9次型识别,最后基于SVM支持向量机的二次分类模型,利用K次型的数据,构建剔除不属于K次型的模型。结果表明:深度置信网络对K,F型恒星分类效果较好,但是对K,F次型的分类效果不佳;SVM支持向量机在K,F型恒星分类以及相应的次型分类都具有较好的识别率,对K,F型分类效果要好于K,F次型的分类效果;BP神经网络对K,F型恒星以及其次型的识别一般;在剔除不属于K次型实验中,剔除率高达100%,可知SVM能够对未知的光谱数据进行筛选与分类。 相似文献
15.
基于RBF神经网络的图像融合复原方法研究 总被引:3,自引:2,他引:3
提出了一种基于径向基函数(RBF)神经网络的多通道图像数据融合复原方法,研究了该方法在多光谱图像复原上的应用.将软竞争学习策略和自适应调整隐节点相结合对网络进行优化训练.利用多光谱卫星图像数据,对所提出的方法进行仿真实验.实验结果表明:该融合复原方法提高了复原图像的质量;改进后的学习算法能够保证学习准确度和较短的训练时间;实验还表明RBF神经网络的多通道复原和单通道复原、传统的维纳滤波及最大后验概率方法相比,在改善图像像质上具有明显的优越性. 相似文献
16.
17.
18.
车牌字符识别是车牌识别系统中的关键环节。采用图像处理和神经网络相结合的方法设计新的车牌字符识别算法,先对分割出的车牌字符进行归一化处理,然后进行SOBEI.边缘检测和角点特征提取,最后输入BP神经网络进行训练、识别,其中BP神经网络模型属于改进型神经网络。通过一系列神经网络训练和仿真实验,车牌识别速度和正确率得到了明显的提高。 相似文献
19.
The quality of feature extraction plays a significant role in the performance of speech emotion recognition. In order to extract discriminative, affect-salient features from speech signals and then improve the performance of speech emotion recognition, in this paper, a multi-stream convolution-recurrent neural network based on attention mechanism (MSCRNN-A) is proposed. Firstly, a multi-stream sub-branches full convolution network (MSFCN) based on AlexNet is presented to limit the loss of emotional information. In MSFCN, sub-branches are added behind each pooling layer to retain the features of different resolutions, different features from which are fused by adding. Secondly, the MSFCN and Bi-LSTM network are combined to form a hybrid network to extract speech emotion features for the purpose of supplying the temporal structure information of emotional features. Finally, a feature fusion model based on a multi-head attention mechanism is developed to achieve the best fusion features. The proposed method uses an attention mechanism to calculate the contribution degree of different network features, and thereafter realizes the adaptive fusion of different network features by weighting different network features. Aiming to restrain the gradient divergence of the network, different network features and fusion features are connected through shortcut connection to obtain fusion features for recognition. The experimental results on three conventional SER corpora, CASIA, EMODB, and SAVEE, show that our proposed method significantly improves the network recognition performance, with a recognition rate superior to most of the existing state-of-the-art methods. 相似文献