共查询到20条相似文献,搜索用时 31 毫秒
1.
Luis C.O. Dacal 《Solid State Communications》2011,151(10):781-784
We present ab initio calculations of the InP band structure in the wurtzite phase and compare it with that of the zincblende phase. In both calculations, we use the full potential linearized augmented plane wave method as implemented in the WIEN2k code and the modified Becke-Johnson exchange potential, which provides an improved value of the bandgap. The structural optimization of the wurtizte InP gives , , and an internal parameter u=0.371, showing the existence of a spontaneous polarization along the growth axis. As compared to the ideal wurtzite structure (that with the lattice parameter derived from the zincblende structure calculations), the actual wurtzite structure is compressed (−1.3%) in plane and expanded (0.7%) along the c-direction. The value of the calculated band gaps agrees well with recent optical experiments. The calculations are also consistent with the optical transitions found using polarized light. 相似文献
2.
Rouhollah Farghadan 《Solid State Communications》2011,151(23):1763-1766
We examine spin-polarized edge and magnetoresistance (MR) in Fe/graphene flake (GF)/Fe junctions. For simulating various edge designs, we use the tight-binding approximation, mean-field scheme for the Hubbard model and the Landauer-Büttiker formalism. The Fe electrodes strongly affect electronic states and magnetic properties of the GF and induce magnetism in the edge atoms even in case of armchair interfaces. Also, the edge magnetic moments of the zigzag interface rotate and couple antiferromagnetically with the Fe electrodes. The conductivity of the junctions strongly depend on the relative magnetic orientation of the Fe electrodes, so, the junctions show high MR ratios. Moreover, edge geometry and localized edge state in the GF alter the MR ratios and produce large (small) variation in the MR at low (high) bias voltages. 相似文献
3.
We have calculated the band structure of Ca3Co2O6 and Ca3CoNiO6 by using the self-consistent full-potential linearized augmented plane-wave method within density function theory and the generalized gradient approximation for the exchange and correlation potential. The spin-orbit interaction is incorporated in the calculations using a second variational procedure. The relation of these band structure calculations to thermoelectric transport is discussed. The results illustrate that transport is highly anisotropic with much larger mobility in the a-b plane than out of the a-b plane, and the introduction of Ni in Ca3Co2O6 alters its electronic structure and its thermoelectric transport properties. 相似文献
4.
Chanchal Ghosh 《Journal of Physics and Chemistry of Solids》2009,70(6):1024-1029
Results of theoretical investigation on the structural and electronic properties of GaAs/AlAs and AlAs/GaAs core/shell nanoparticles are presented. We have considered relaxed structures of essentially spherical parts of the zinc-blende crystal structure. The electronic properties and the total energy were calculated using density-functional tight-binding method. Our results include the charge distribution, density of states (DOSs), electronic energy levels (in particular HOMO and LUMO), HOMO-LUMO gap, excitation spectra and their variation with shell thickness for both GaAs/AlAs and AlAs/GaAs core/shell systems. 相似文献
5.
Neeraj K. Jaiswal 《Solid State Communications》2011,151(20):1490-1495
The size dependent electronic properties of armchair graphene nanoribbons (AGNR) with Ni doped atoms have been investigated using spin-unrestricted density functional theory. We predict antiferromagnetic (AFM) ground states for Ni-termination and one edge Ni-doping. The computed formation energy reveals that one edge Ni-terminated AGNR are energetically more favourable as compared to pristine ribbons. One edge substitutional doping is energetically more favourable as compared to centre doping by ∼1 eV whereas both edge doping is unfavourable. The bond length of substitutional Ni atoms is shorter than that of Ni adsorption in GNR, implying a stronger binding for substitutional Ni atoms. It is evident that binding energy is also affected by the coordination number of the foreign atom. The results show that Ni-interaction perturbs the electronic structure of the ribbons significantly, causing enhanced metallicity for all configurations irrespective of doping site. The band structures reveal the separation of spin up and down electronic states indicating towards the existence of spin polarized current in Ni-terminated and one edge doped ribbons. Our calculation predicts that AGNR containing Ni impurities can play an important role for the fabrication of spin filters and spintronic devices. 相似文献
6.
In this work, we study the effects related to the creation of electron/hole pairs via application of an external electric field that acts on a pristine trans-polyacetylene molecular chain at zero-temperature. This phenomenon is termed Schwinger–Landau–Zener (SLZ) effect and arises when a physical system, which can even be the vacuum, is under the action of a strong, static and spatially homogeneous electric field. Initially, we investigate how the electrical conductivity of the polyacetylene changes with the applied field, by considering the carriers production as well as the variation of the interband gap according to certain ab initio models. Next, we analyse the competition between the SLZ effect and another one associated with the incidence of an uniform electric field on one-dimensional crystals – the Bloch oscillations. We evaluate the conditions in which these latter can be destroyed by the particles created through the same field that induces them, and verify the possibility of occurrence of the Bloch oscillations inside the trans-polyacetylene with frequencies equal to or higher than the terahertz scale. 相似文献
7.
Motivated by recent experiments on suspended graphene showing carrier mobilities as high as 200,000 cm2/V s, we theoretically calculate transport properties assuming Coulomb impurities as the dominant scattering mechanism. We argue that the substrate-free experiments done in the diffusive regime are consistent with our theory and verify many of our earlier predictions including (i) removal of the substrate will increase mobility since most of the charged impurities are in the substrate, (ii) the minimum conductivity is not universal, but depends on impurity concentration with cleaner samples having a higher minimum conductivity. We further argue that experiments on suspended graphene put strong constraints on the two parameters involved in our theory, namely, the charged impurity concentration and d, the typical distance of a charged impurity from the graphene sheet. The recent experiments on suspended graphene indicate a residual impurity density of which are presumably stuck to the graphene interface, compared to impurity densities of for graphene on SiO2 substrate. Transport experiments can therefore be used as a spectroscopic tool to identify the properties of the remaining impurities in suspended graphene. 相似文献
8.
Detailed theoretical analysis of the temperature dependence of two-dimensional electron gas mobility data in GaAs1−xNx/Al0.38Ga0.62As samples (x=0, 0.1% and 0.4%) shows that, as x increases, the dislocation density and the number of ionized impurities in the potential well increase by a factor of ∼ ×300 and ∼ ×500, respectively. 相似文献
9.
S. Naji M. Bhihi H Labrim A. Belhaj A. Benyoussef A. El Kenz M. Loulidi 《Journal of Physics and Chemistry of Solids》2014
The opening of the energy gap and the total energy of the graphene-like bilayers are investigated using ab initio calculations. The studied model consists of a static single layer of graphene interacting with an extra dynamic one placed at a varying vertical distance d in the (AB) stacking arrangement. The effects of the vertical distance variation on the energy gap and the total energy of the system are discussed first. Starting from a distance around the van der Waals length, the energy gap does not depend on the vertical distance variation and the system exhibits graphene-like properties with minor deformations in the lattice size parameter and the energy dispersion behaviour around K points. However, it has been shown that the diagonal distance variation of the graphene-like bilayer modifies the electronic structure properties. This modification depends on an intermediate stacking arrangement between the (AA) and the (AB) configurations. It has been shown that the diagonal distance variation has an influence on the states of pz electrons in the (AB) arrangement and it can be explored to open the energy gap. 相似文献
10.
A field transformation method is introduced for the calculation of photonic band structures in periodic lattices of dielectrics. The method has the advantage of avoiding the complications due to matching boundary conditions at the interface of the constituents in a composite medium. The formalism is presented for propagation modes in which the electric field is parallel to the interfaces in both one-dimensional and two-dimensional periodic dielectric structures. Numerical calculations using the present formalism involve typically a matrix of size much smaller than that of using standard plane wave expansions. 相似文献
11.
The structural and electronic properties of a hydrogen terminated hexagonally AlN nanoribbon with 6 zigzag Al-N chains across the ribbon width (6-ZAlNNR) and the hexagonally bonded hetero-sheets AlNCx (x=2,4,6) consisting of AlN and graphite strips with zigzag shaped borders have been investigated systemically by using the first-principles. The results show that in 6-ZAlNNR, the states of the lowest unoccupied conduction band (LUCB) and the highest occupied valence band (HOVB) at zone boundary Z are edge states whose charges are localized at edge Al and N atoms, respectively. Introducing the graphite strip Cx and increasing its width lead to the LUCB and HOVB getting closer with each other especially in flat dispersion region around the zone boundary Jy, thus decreasing in the energy gap of the hetero-sheets AlNC2, AlNC4 and AlNC6 successively. Similar to the edge states existing in zigzag edged AlNNR, the flat dispersion border states also exist in the zigzag borders of hexagonally networked hetero-sheets AlNCx. Unlike the edge states whose charges are localized at one of the edge atoms, the border states are localized at two atoms of the borders with either bonding or antibonding character. 相似文献
12.
用第一性原理研究了N掺杂zigzag型石墨烯纳米带(z-GNRs)的能带结构、透射谱和电流电压特性,研究结果表明N掺杂将使得z-GNRs的能带结构中出现能隙,材料从金属转变为半导体;随着杂质浓度的增大,相同偏压下电流明显减小,同时体系费米面附近的透射率逐渐减小;z-GNRs的长度、宽度以及N原子的替代掺杂位置均会对输运性质产生影响,在宽度较小的情况下,掺杂浓度和掺杂位置两种因素共同影响体系的输运性质.
关键词:
石墨烯纳米带
N掺杂
能带结构
输运性质 相似文献
13.
We review the effect of uniaxial strain on the low-energy electronic dispersion and Landau level structure of bilayer graphene. Based on the tight-binding approach, we derive a strain-induced term in the low-energy Hamiltonian and show how strain affects the low-energy electronic band structure. Depending on the magnitude and direction of applied strain, we identify three regimes of qualitatively different electronic dispersions. We also show that in a weak magnetic field, sufficient strain results in the filling factor ν=±4 being the most stable in the quantum Hall effect measurement, instead of ν=±8 in unperturbed bilayer at a weak magnetic field. To mention, in one of the strain regimes, the activation gap at ν=±4 is, down to very low fields, weakly dependent on the strength of the magnetic field. 相似文献
14.
Xiaohui DengYanqun Wu Jiayu Dai Dongdong KangDengyu Zhang 《Physics letters. A》2011,375(44):3890-3894
A pathway to open the band gap of graphene by p-n codoping is presented according to the first principles study. Two models are used: Lithium adsorbed on Boron-doped graphene (BG) and Boron-Nitrogen (B/N) codoping into graphene. The stability of Lithium adsorbed on BG is firstly analyzed, showing that the hollow site is the most stable configuration, and there is no energy barrier from some metastable configurations to a stable one. After the p-n codoping, the electronic structures of graphene are modulated to open a band gap with width from 0.0 eV to 0.49 eV, depending on the codoping configurations. The intrinsic physical mechanism responsible for the gap opening is the combination of the Boron atom acting as hole doping and Nitrogen (Lithium) as electron doping. 相似文献
15.
Estela A. Gonzalez 《Journal of Physics and Chemistry of Solids》2004,65(11):1799-1807
The electronic structure and bonding in Fe-Pd alloys were computed using a tight binding method. Two phases have been identified for these alloys, a high temperature fcc and a low temperature fct structure. The hydrogen absorption turns out to be a favorable process in both structures. The hydrogen at tetrahedral interstitial site for the fct structure is 2.2 eV more stable than that impurity atom located at an octahedral interstitial site in the fcc structure.The density of states curves show a peak below the d metal band which is made up mostly of hydrogen based states (>50% H1s) while the metal contribution includes mainly s and p orbitals.In the fcc structure, both Fe-H and Pd-H bonds are developed while the Fe-Pd interface shows antibonding filled states near the Fermi level. When the fct phase is considered, the Fe-H overlap population (OP) decreases, while the Pd-H remains similar to the previous case. The Fe-Fe OP decreases and the Pd-Pd bonds are almost unaltered. The interfacial Fe-Pd bonds are almost unaffected by hydrogen. The band structure of the hydrogenated alloys in the fcc and fct phases were also computed. 相似文献
16.
The origin of the singular diamagnetic susceptibility at the Dirac point is probed through the study of effects of band-gap opening and spatially varying magnetic field. In the presence of a band gap, the susceptibility is nonzero only inside the band gap and exhibits a discrete jump at the band edges down to zero in the conduction and valence bands. The jump height is understood in terms of the pseudo-spin paramagnetism arising from valley degree of freedom. In spatially varying magnetic field with wave vector q, the susceptibility becomes nonzero only in a finite energy region containing the Dirac point, determined by q. This behavior is understood in terms of electronic states numerically calculated in periodic magnetic field. 相似文献
17.
The structural properties, elastic properties and electronic structures of hexagonal Al3RE intermetallic compounds are calculated by using first-principles calculations based on density functional theory. Since there exists strong on-site Coulomb repulsion between the highly localized 4f electrons of RE atoms, we present a combination of the GGA and the LSDA+U approaches in order to obtain the appropriate results. The GGA calculated lattice constants for the hexagonal Al3RE intermetallic compounds are in good agreement with available experimental values. The results of cohesive energy indicate that these compounds can be stable under absolute zero Kelvin and the stability of Al3Gd is the strongest in all of the hexagonal Al3RE compounds. The densities of states for GGA and LSDA+U approaches are also obtained for the Al3RE intermetallic compounds. The mechanical properties are calculated from the GGA method in this paper. According to the computed single crystal elastic constants, Al3La, Al3Sm and Al3Gd are mechanically unstable, while Al3Ce, Al3Pr and Al3Nd are stable. The polycrystalline elastic modulus and Poisson’s ratio have been deduced by using Voigt-Reuss-Hill (VRH) approximations, and the calculated ratio of bulk modulus to shear modulus indicates that Al3La compound is ductile material, but Al3Ce, Al3Pr, Al3Nd, Al3Sm and Al3Gd are brittle materials. 相似文献
18.
We have investigated the electro-optical properties of zigzag BNNTs, under an external electric field, using the tight binding approximation. It is found that an electric field modifies the band structure and splits the band degeneracy. Also the large electric strength leads to coupling the neighbor subbands which these effects reflect in the DOS and JDOS spectrum. It has been shown that, unlike CNTs, the band gap of BNNTs can be reduced linearly by applying a transverse external electric field. Also we show that the larger diameter tubes are more sensitive than small ones. The semiconducting metallic transition can be achieved through increasing the applied fields. The number and position of peaks in the JDOS spectrum are dependent on electric field strength. It is found that at a high electric field, the two lowest subbands are oscillatory with multiple nodes at the Fermi level. 相似文献
19.
Alexander Tzalenchuk Samuel Lara-Avila Mikael Syväjärvi Olga Kazakova Kasper Moth-Poulsen Sergey Kopylov Sergey Kubatkin 《Solid State Communications》2011,151(16):1094-1099
Here we review the concepts and technologies, in particular photochemical gating, which contributed to the recent progress in quantum Hall resistance metrology based on large scale epitaxial graphene on silicon carbide. 相似文献
20.
The full-potential linearized augmented-plane-wave method is used to investigate the electronic structure of several Co- and Mn-based ferromagnetic Heusler alloys. It is shown that calculated lattice constants and spin magnetic moments are in good agreement with experimental values. Electronic structure of Ni2MnGa(001) surface as well as Ni2MnGa thin film on GaAs(001) substrate is also investigated. The changes of electronic structure and magnetic properties at surface are analyzed. 相似文献