首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cu(I)-Cu(I) and Cu(I)-Ru(II) dinuclear complexes bridged by the 2,5-bppz (2,5-bis(2-pyridyl)pyrazine) ligand have been prepared and characterized including the X-ray crystallographic study of the dinuclear [{CuI(PPh3)2}2(mu-2,5-bppz)](PF6)2)2CH3Cl complex: a = 13.974(2), b = 13.993(2), c = 13.537(2) A; alpha = 101.98(1), beta = 103.22(1), gamma = 113.90(1) degrees ; triclinic, P, Z = 1. The trinuclear [{(bpy)2RuII(mu-2,5-bppz)}2CuI](PF6)5 complex was also prepared, and the structure of the complex in solution was studied by spectrometric titration. The dinuclear Cu(I) complex and [(bpy)2RuII(mu-2,5-bppz)CuI(PPh3)2](PF6)5 show photoluminescence in the solid state, which should arise from MLCT states. Photochemical oxidation of the trinuclear RuII2CuI complex occurs in the presence of oxygen to give a RuII2CuII complex. The MLCT states and the redox reaction in the excited state are discussed.  相似文献   

2.
Nickel(ii) complexes supported by a series of pyridylalkylamine ligands [tris(2-pyridylmethyl)amine (TPA; complexes and ), tris[2-(2-pyridyl)ethyl]amine (TEPA; complexes and ), 6-[N,N-bis(2-pyridylmethyl)aminomethyl]-2,4-di-tert-butylphenol ((Dtbp)Pym2H; complexes and ), 6-[N,N-bis[2-(2-pyridyl)ethyl]aminomethyl]-2,4-di-tert-butylphenol ((Dtbp)Pye2H; complexes and ), N-benzyl-bis(2-pyridylmethyl)amine ((Bz)Pym2; complex ) and N-benzyl-bis[2-(2-pyridyl)ethyl]amine ((Bz)Pye2; complex )] have been synthesized and structurally characterized by X-ray crystallographic analysis [coordinating counter anion (co-ligand) of complexes n (n = 1-6) is AcO(-) and that of complexes n (n = 1-4) is NO(3)(-)]. All complexes, except , were obtained as a mononuclear nickel(ii) complex exhibiting a distorted octahedral geometry, whereas complex was isolated as a dinuclear nickel(ii) complex bridged by two nitrate anions. Catalytic activity of the nickel(ii) complexes were examined in the oxidation of cyclohexane with m-CPBA as an oxidant. In all cases, the oxygenation reaction proceeded catalytically to give cyclohexanol as the major product together with cyclohexanone as the minor product. The complexes containing the pyridylmethylamine (Pym) metal-binding group (, , ) showed higher turnover number (TON) than those containing the pyridylethylamine (Pye) metal-binding group (, , ), whereas the alcohol/ketone (A/K) selectivity was much higher with the latter (Pye system) than the former (Pym system). On the other hand, the existence of the NO(3)(-) co-ligand (, and ) caused a lag phase in the early stage of the catalytic reaction. Electronic and steric effects of the supporting ligands as well as the chemical behavior of the co-ligands on the catalytic activity of the nickel(ii) complexes have been discussed on the basis of their X-ray structures.  相似文献   

3.
Díez J  Gamasa MP  Panera M 《Inorganic chemistry》2006,45(25):10043-10045
Tetranuclear [Cu4I4{(S,S)-iPr-pybox}2] (1) and dinuclear [Cu2Cl-{(S,S)-iPr-pybox}2][CuCl2] (2) copper(I) complexes have been synthesized by reaction of iPr-pybox with CuI and CuCl, respectively. Furthermore, dinuclear [Cu2(R-pybox)2][PF6]2 [R-pybox = (R,R)-Ph-pybox (3), (S,S)-iPr-pybox (4)] and mononuclear complexes [Cu(R-pybox)2][PF6] [R-pybox = (R,R)-Ph-pybox (5), (S,S)-iPr-pybox (6)] have been prepared by reaction of [Cu(MeCN)4][PF6] and the corresponding pybox. The structures of complexes 1-3 have been determined by X-ray diffraction analyses.  相似文献   

4.
Abstract

A new dinuclear copper(I) cluster complex, [(o-Tol)3PCuI2CuP(o-Tol)3(DMF)] (1) ((o-Tol)3P = tris(2- methylphenyl)phosphine, DMF = N, N′-dimethylformamide), has been synthesized and the crystal structure was determined by a single-crystal X-ray diffraction study. The dinuclear copper(I) cluster molecule containing an asymmetric Cu2I2P2O core and the dinuclear clusters are fused together by a strong π–π stacking interaction to form asupramolecular one-dimensional (1D) chain. After having compared the relevant complexes composed of CuI and monodentate triarylphosphine ligands, the impact of the substituent of the triarylphosphine ligand to the subsequent complex structure has also been discussed.Except for a strong π–π* bond, the complex 1 also exhibits a weak metal-to-ligand charge transfer (MLCT) absorption bond in the 430–530-nm region and displays a weak green-yellow emission when irradiated by ultraviolet (UV) light. The thermogravimetric analysis demonstrates that its thermal stability is good, and the corresponding PXRD analysis has revealed that the final, organic-free decomposed product is CuI.  相似文献   

5.
The interaction of Cu(II) with the ligand tdci (1,3,5-trideoxy-1,3,5-tris(dimethylamino)-cis-inositol) was studied both in the solid state and in solution. The complexes that were formed were also tested for phosphoesterase activity. The pentanuclear complex [Cu(5)(tdciH(-2))(tdci)(2)(OH)(2)(NO(3))(2)](NO(3))(4).6H(2)O consists of two dinuclear units and one trinuclear unit, having two shared copper(II) ions. The metal centers within the pentanuclear structure have three distinct coordination environments. All five copper(II) ions are linked by hydroxo/alkoxo bridges forming a Cu(5)O(6) cage. The Cu-Cu separations of the bridged centers are between 2.916 and 3.782 A, while those of the nonbridged metal ions are 5.455-5.712 A. The solution equilibria in the Cu(II)-tdci system proved to be extremely complicated. Depending on the pH and metal-to-ligand ratio, several differently deprotonated mono-, di-, and trinuclear complexes are formed. Their presence in solution was supported by mass, CW, and pulse EPR spectroscopic study, too. In these complexes, the metal ions are presumed to occupy tridentate [O(ax),N(eq),O(ax)] coordination sites and the O-donors of tdci may serve as bridging units between two metal ions. Additionally, deprotonation of the metal-bound water molecules may occur. The dinuclear Cu(2)LH(-3) species, formed around pH 8.5, provides outstanding rate acceleration for the hydrolysis of the activated phosphodiester bis(4-nitrophenyl)phosphate (BNPP). The second-order rate constant of BNPP hydrolysis promoted by the dinuclear complex (T = 298 K) is 0.95 M(-1) s(-1), which is ca. 47600-fold higher than that of the hydroxide ion catalyzed hydrolysis (k(OH)). Its activity is selective for the phosphodiester, and the hydrolysis was proved to be catalytic. The proposed bifunctional mechanism of the hydrolysis includes double Lewis acid activation and intramolecular nucleophilic catalysis.  相似文献   

6.
Three angular ditopic ligands (1,3-bis(benzimidazol-1-ylmethyl)-4,6-dimethylbenzene L(1), 1,3-bis(benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene L(2), and 1,4-bis(benzimidazol-1-ylmethyl)-2,3,5,6-tetramethylbenzene L(3)) and one tripodal ligand 1,3,5-tris(benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene L(4) have been prepared. Reaction of these shape-specific designed ligands with different metal salts affords a series of discrete molecular architectures: [Ag(2)L(1)(2)](BF(4))(2) 1, [Ag(2)L(2)(2)](CF(3)SO(3))(2) 2, [CF(3)SO(3)(-) subset Ag(2)L(3)(2)]CF(3)SO(3) 3, [CF(3)SO(3)(-) subset Ag(2)L(3)(3)]CF(3)SO(3) 4, [ClO(4)(-) subset Cu(2)L(2)(4)](ClO(4))(3) 5, [4H(2)O subset Ni(2)L(2)(4)Cl(4)].6H(2)O 6, [BF(4)(-) subset Ag(3)L(4)(2)](BF(4))(2) 7, [ClO(4)(-) subset Ag(3)L(4)(2)](ClO(4))(2) 8, and [CuI(3)(2-) subset Cu(3)L(4)(2)](2)[Cu(2)I(4)] 9. The compounds were characterized by elemental analysis, ESI-MS, IR, and NMR spectroscopy, and X-ray crystallography. 1 is a dinuclear metallacycle with 2-fold rotational symmetry in which two syn-conformational L(1) ligands are connected by two linearly coordinated Ag(+) ions. 2 and 3 are structurally related, consisting of rectangular structures assembled from two linearly coordinated Ag(+) ions and two L(2) or L(3) ligands. The structure of 4 is a trigonal prismatic box consisting of two Ag(+) ions in trigonal planar coordination linked by three L(3) ligands, while the structures of 5 and 6 are tetragonal prismatic cages constructed by two square planar Cu(2+) or Ni(2+) ions linked by four L(2) ligands. The topologies of 7-9 are similar to that of 4; however, these three structures are assembled from three linearly coordinated Ag(+) or Cu(+) ions and two tripodal ligands, representing an alternative strategy to assembling a trigonal prism. (1)H NMR and ESI-MS were utilized to elucidate the solution structures of these macrocycles.  相似文献   

7.
Tu C  Shao Y  Gan N  Xu Q  Guo Z 《Inorganic chemistry》2004,43(15):4761-4766
A novel trinuclear copper(II) complex, Cu3-L (L = N,N,N',N',N' ',N' '-hexakis(2-pyridyl)-1,3,5-tris(aminomethyl)benzene), exhibited efficient oxidative strand scission of plasmid DNA. The solution behavior of the complex has been studied by potentiometric titration, UV spectroscopy, and cyclic voltammetry. The data showed that there are three redox-active copper ions in the complex with three types of bound water. The complex demonstrated a moderate binding ability for DNA. Cu3-L readily cleaves plasmid DNA in the presence of ascorbate to give nicked (form II) and then linear (form III) products, while the cleavage efficiency using H2O2 is less than by ascorbate, suggesting that the cleavage mode of the trinuclear complex is somewhat different from the traditional Fenton-like catalysis. Meanwhile, Cu3-L is far more efficient than its mononuclear analogue Cu-DPA (DPA = 2,2'-dipyridylamine) at the same [Cu2+] concentration, which suggests a possible synergy between the three or at least two Cu(II) centers in Cu3-L that contributes to its relatively high nucleolytic efficiency. Furthermore, the presence of standard radical scavengers does not have clear effect on the cleavage efficiency, suggesting the reactive intermediates leading to DNA cleavage are not freely diffusible radicals.  相似文献   

8.
Tripodal bis(imidazole) thioether ligands and the corresponding copper(I) complexes [(BIMT-OR)Cu(L)]PF6 [L = CH3CN (2), CO (3); R = H (a), CH3 (b)] have been prepared as models for the Cu(B) site of copper hydroxylase enzymes. The IR (CO) values of 3a and 3b (L = CO) are comparable to those of the carbonylated enzymes. The reaction of 2a with O2 gives dinuclear complex 4 with bridging BIMT-O ligands and oxidized -SMe groups, whereas oxygenation of 2b affords [(BIMT-OMe)2Cu2O(H)2](CF3SO3)2 (5) and Cu(BIMT-OMe)(DMF)2](PF6)2 (6).  相似文献   

9.
A series of copper(I) coordination complexes, CuI(Phen)[2-(Dpp)bp] (1) (Phen?=?phenanthroline, 2-(Dpp)bp?=?2-(Diphenylphosphino)-biphenyl), Cu2I2(Phen)[2-(Dpp)bp] (2), CuI(2-PBI)[2-(Dpp)bp] (3) and (2-PBI?=?2-(pyridin-2-yl)-1H-benzo[d]imidazole) and CuI(Bipy)[2-(Dpp)bp] (Bipy?=?2,2′-bipyridine) (4) have been synthesized. X-ray crystal structure studies revealed that complexes 1, 3 and 4 showed mononuclear structures with the copper atoms coordinated by iodide, a chelating nitrogen-donor ligand, and a monodentate phosphine ligand. However, the coordination centers display different distortions of their tetrahedral geometries, according to the steric hindrance of the bulky phosphine ligands. Complex 2 has a dinuclear structure, with trigonal and tetrahedral coordination centers. Variations in the aromatic system of the N-heterocyclic ligands result in different luminescence properties. Thus, the emission maxima for these complexes range from 580 to 642 nm, with lifetimes of τ?=?0.6–0.9 and 1.6–4.2 μs. TD-DFT calculations reveal the origin of the luminescence to be metal–ligand charge transfer, as well as halogen–ligand charge transfer. The optical absorption spectra and thermal stabilities of the complexes have also been studied.  相似文献   

10.
Jia WL  McCormick T  Tao Y  Lu JP  Wang S 《Inorganic chemistry》2005,44(16):5706-5712
Four dinuclear and trinuclear Cu(I) complexes that contain 2-(2'-pyridyl)benzimidazolyl derivative ligands including 1,4-bis[2-(2'-pyridyl)benzimidazolyl]benzene (1,4-bmb), 1,3-bis[2-(2'-pyridyl)benzimidazolyl]benzene (1,3-bmb), 1,3,5-tris[2-(2'-pyridyl)benzimidazolyl]benzene (tmb), and 4,4'-bis[2-(2'-pyridyl)benzimidazolyl]biphenyl (bmbp) have been synthesized. The formulas of these complexes are [Cu(2)(1,4-bmb)(PPh(3))(4)][BF(4)](2) (1), [Cu(2)(1,3-bmb)(PPh(3))(4)][BF(4)](2) (2), [Cu(3)(tmb)(PPh(3))(6)][BF(4)](3) (3), and [Cu(2)(bmbp)(PPh(3))(4)][BF(4)](2) (4), respectively. The crystal structures of 2-4 have been determined by single-crystal X-ray diffraction analyses. The Cu(I) ions in the complexes have a distorted tetrahedral geometry. For 3, two structural isomers (syn and anti) resulted from two different orientations of the three 2-(2'-pyridyl)benzimidazolyl chelating units were observed in the crystal lattice. Variable-temperature (1)H NMR experiments established the presence of syn and anti isomers for 1-3 in solution which interconvert at ambient temperature. Complexes 1-4 have a weak MLCT absorption band in the 350-450 nm region and display a yellow-orange emission when irradiated by UV light. One unexpected finding is that the yellow-orange emission of complexes 1-4 has a very long decay lifetime (approximately 200 micros) at 77 K. An electroluminescent (EL) device using 4 as the emitter and PVK as the host was fabricated. However, the long decay lifetime of the copper complexes may limit their applications as phosphorescent emitters in EL devices.  相似文献   

11.
12.
A new family of dicopper(I) complexes [CuI2RL](X)2 (R=H, 1X, R=tBu, 2X and R=NO2, 3X, X=CF3SO3, ClO4, SbF6, or BArF, BArF=[B{3,5-(CF3)2C6H3}4]-), where RL is a Schiff-base ligand containing two tridentate binding sites linked by a xylyl spacer, has been prepared and characterized, and its reaction with O2 has been studied. The complexes were designed with the aim of reproducing structural aspects of the active site of type 3 dicopper proteins; they contain two three-coordinate copper sites and a rather flexible podand ligand backbone. The solid-state structures of 1ClO4, 2CF3SO3, 2ClO4, and 3BArF.CH3CN have been established by single-crystal X-ray diffraction analysis. 1ClO4 adopts a polymeric structure in the solid state while 2CF3SO3, 2ClO4, and 3BArF.CH3CN are monomeric. The complexes have been studied in solution by means of 1H and 19F NMR spectroscopy, which put forward the presence of dynamic processes. 1-3BArF and 1-3CF3SO3 in acetone react rapidly with O2 to generate metaestable [CuIII2(mu-O)2(RL)]2+ 1-3(O2) and [CuIII2(mu-O)2(CF3SO3)(RL)]+ 1-3(O2)(CF3SO3) species, respectively, that have been characterized by UV-vis spectroscopy and resonance Raman analysis. Instead, reaction of 1-3BArF with O2 in CH2Cl2 results in intermolecular O2 binding. DFT methods have been used to study the chemical identities and structural parameters of the O2 adducts, and the relative stability of the CuIII2(mu-O)2 form with respect to the CuII2(mu-eta2:eta2-O2) isomer. The reaction of 1X, X = CF3SO3 and BArF, with O2 in acetone has been studied by stopped-flow UV-vis exhibiting an unexpected very fast reaction rate (k=3.82(4)x10(3) M-1 s-1, DeltaH=4.9+/-0.5 kJ.mol-1, DeltaS=-148+/-5 J.K-1.mol-1), nearly 3 orders of magnitude faster than in the parent [CuI2(m-XYLMeAN)]2+. Thermal decomposition of 1-3(O2) does not result in aromatic hydroxylation. The mechanism and kinetics of O2 binding to 1X (X=CF3SO3 and BArF) are discussed and compared with those associated with selected examples of reported models of O2-processing copper proteins. A synergistic role of the copper ions in O2 binding and activation is clearly established from this analysis.  相似文献   

13.
The reaction of Cu2+ acetate monohydrate with 2-[N,N'-bis(carboxymethyl)aminomethyl]-4-carboxyphenol (H4cacp), 2-[N,N-bis(carboxymethyl)aminomethyl]hydroquinone (H4cah) and the dinucleating 2,5-bis[N,N-bis(carboxymethyl)aminomethyl]hydroquinone (H6bicah) in water results in the formation of several Cu2+ species, which are in dynamic equilibrium in aqueous solution and their stability is pH dependent. A systematic crystallographic study of these species was pursued, resulting in the characterization of most of the species. Additional techniques were employed to characterize the molecules in the solid state (infrared spectroscopy) and in solution (UV-vis spectroscopy and electrochemistry). These measurements show that the Cu2+ ions are ligated mainly to the iminodiacetate at pH < 6, exhibiting only weak interactions with the phenol oxygen. At pH > 6, the phenol oxygen was deprotonated and dinuclear-bridged species, from the phenolate oxygen complexes exhibiting a Cu2+ 2O2 core, were isolated. The coordination environment around the copper ions varies between trigonal bipyramidal, tetragonal pyramidal and distorted octahedral geometries. The two unpaired electrons of the Cu2+ ions are found to be antiferromagnetically coupled. A survey of the magnetic and structural properties of the dinuclear phenoxide bridged Cu2+ complexes shows that the strength of the antiferromagnetic coupling is linearly dependent on the Cu-Ophenolate bond lengths, at bond distances below 1.98 angstroms. The effect of the Cu-O-Cu angles on the magnetic properties of the complexes is also discussed.  相似文献   

14.
To investigate the potential cytotoxicity of copper(II)-based complexes, three coordination compounds with heterocyclic ligands, Cu(pbmbt)Cl2(CH3OH) (1), Cu2(ddbib)2(NO3)4·3CH3OH (2), and Cu3(ttmtmb)2Cl6·2.5H2O (3), which include mononuclear, dinuclear, and trinuclear structures, have been synthesized from reactions of corresponding copper(II) salts with 1-((2-pyrazinyl)-1H-benzoimidazol-1-yl)methyl)-1H-benzotriazole (pbmbt), 2-(2,3-dihydropyrazin-2-yl)-1-((4-((2-(2,3-dihydropyrazin-2-yl)-1H-benzo[d]imidazol-1-yl)methyl)phenyl)methyl)-1H-benzo[d]imidazole (ddbib), and 1,1′,1′′-((2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene)tris(2-methyl-1H-benzoimidazole) (ttmtmb), respectively. IC50 values revealed that 2 and 3 show strong cytotoxicity, whereas 1 is weakly cytotoxic after being tested against a panel of several human alimentary system carcinoma cell lines (SGC7901, EC109, SMMC7721, and HT29). The number of copper centers and different structures could make a tremendous difference on their cytotoxicity.  相似文献   

15.
Tu C  Lin J  Shao Y  Guo Z 《Inorganic chemistry》2003,42(19):5795-5797
A novel hexadentate ligand, N,N,N',N',N",N"-hexa(2-pyridyl)-1,3,5-tris(aminomethyl)benzene (L), was designed and synthesized. The X-ray structure analysis reveals that the three dipyridylamine (DPA) groups of L are almost perpendicular to the central trimethylenebenzene, and two of them are spacially close to each other while the third one is further apart. The trinuclear Pt(II) complexes [Pt(3)LCl(6)] (1) and [Pt(3)L(CBDCA)(3)] (2) (where CBDCA represents cyclobutane dicarboxylic acid) were prepared and fully characterized by IR, NMR, and ESMS spectroscopy. A mononuclear complex, [PtL(CBDCA)] (3), was also prepared and structurally characterized, which suggests that controlled formation of mono-, di-, and trinuclear complexes with L is possible. Spectroscopic data showed that complexes 2 and 3 are able to bind to calf thymus DNA and their CBDCA group can be readily replaced by thiourea.  相似文献   

16.
A series of copper(II) and copper(I) complexes have been synthesized with ligands combining 6-methyl-2,2'-bipyridines with cyclotriveratrylene (CTV) (1) and with catechol (2). The electrochemical, (1)H NMR, and mass spectrometry characterizations of these complexes are described and discussed. The six pendant bipyridines of ligand 1 allow for the formation of two trinuclear copper(I) complexes [(1)Cu(3)](BF(4))(3) differing only in the conformation "vic" or "int" adopted by the ligand to fit the tetrahedral cuprous ions. Similarly, 1 generates two trinuclear copper(II) complexes in which the conformation of the ligand fits the square planar geometry of cupric ions. In both the cuprous and cupric complexes, a conformational equilibrium exists. Ligand 2 bearing two methylbipyridines has proven to be a useful model of the coordinating sites of ligand 1. In this case, two homologous copper(I) complexes are obtained, [(2)Cu]BF(4) and [(2)(2)Cu(2)](BF(4))(2), modeling respectively two possible coordination conformations of ligand 1. With copper(II), ligand 2 yields only one complex [(2)Cu](CF(3)SO(3))(2), which allows for the unambiguous identification of the conformations observed for ligand 1 complexes. The different coordinating modes of ligand 1 in the complexes mentioned are in exchange but exhibit different physical properties, thus representing a new bistable system based on conformational isomerism which exhibits an electrochemical potential hysteresis. An equilibrium constant and thermodynamic data were obtained for this system by variable-temperature cyclic voltammetry. The influence of coordinating vs noncoordinating solvents was also studied.  相似文献   

17.
New bis(pyrazolyl)borato olefin complexes of copper(I) of general formula Cu[BH2(3,5-(CF3)2Pz)2](olefin) have been prepared (olefins: coe = cyclooctene, van = 4-vinylanisole, clsty = 4-chlorostyrene, tevs = triethylvinylsilane, fn = fumaronitrile). The structures of Cu[BH2(3,5-(CF3)2Pz)2](L), L = coe, van, tevs, fn, have been determined by X-ray diffraction methods. Considering the two N atoms of the bis(pyrazolyl)borate ligand and the midpoint of the C-C double bond of the coordinated olefin, the compounds with L = coe, van and tevs contain a copper atom in a trigonal planar coordination. A coordination polymer with N-coordinated fumaronitrile and tetrahedral coordination of copper atoms is obtained in the case of L = fn. The carbonylation reactions of Cu[BH(2)(3,5-(CF3)2Pz)2](olefin) (olefin = coe, clsty, van, tevs), Cu[BH2(3,5-(CF3)2Pz)2](olefin) + CO<==>Cu[BH2(3,5-(CF3)2Pz)2](CO) + olefin, have been studied gas volumetrically and the thermodynamical parameters of the equilibria for the displacement of the coordinated olefin by carbon monoxide have been determined. These data for copper(I) are compared with those reported in the literature.  相似文献   

18.
Osako T  Ueno Y  Tachi Y  Itoh S 《Inorganic chemistry》2003,42(24):8087-8097
Ligand effects on the structures and redox reactivities of copper complexes have been examined using (2-pyridyl)alkylamine derivatives as the supporting ligands, where particular attention has been focused on the effects of the alkyl linker chain length connecting the tertiary amine nitrogen atom and the pyridine nucleus: N[bond]CH(2)[bond]Py (Pym) vs N[bond]CH(2)CH(2)[bond]Py (Pye). X-ray crystallographic analysis of the copper(I) complex of tridentate ligand (Phe)L(Pym2) [N,N-di(2-pyridylmethyl)-2-phenylethylamine] (complex 1) has demonstrated that it possesses a trigonal pyramidal geometry in which a d[bond]pi interaction with an eta(1)-binding mode exists between the metal ion and one of the ortho carbons of the phenyl ring of the ligand side arm (phenethyl). The result shows sharp contrast to the d[bond]pi interaction with an eta(2)-binding mode existing in the copper(I) complex of (Phe)L(Pye2) [N,N-di[2-(2-pyridyl)ethyl]-2-phenethylamine] (complex 2). Such a d-pi interaction has been shown to affect the stability of the copper(I) complex in CH(2)Cl(2). Oxygenation of copper(I) complex 1 supported by (Phe)L(Pym2) produces a bis(mu-oxo)dicopper(III) complex, also being in sharp contrast to the case of the copper(I) complex 2 with ligand (Phe)L(Pye2), which preferentially affords a (micro-eta(2):eta(2)-peroxo)dicopper(II) complex in the reaction with O(2). Such an effect of the alkyl linker chain length of the metal binding site has also been found to operate in the RSSR (disulfide)/2RS(-) (thiolate) redox system. Namely, ligand (S2,R)L(Pym1) (di[2-[(alkyl)(2-pyridinylmethyl)amino]ethyl] disulfide) with the methylene linker group (Pym) induced the reductive disulfide bond cleavage in the reaction with copper(I) ion to give a bis(micro-thiolato)dicopper(II) complex, while the ligand with the ethylene linker group (Pye), (S2,Bn)L(Pye1) (di[2-[(benzyl)(2-(2-pyridinyl)ethyl)amino]ethyl] disulfide), gave a disulfide-dicopper(I) complex. These ligand effects in the Cu(2)[bond]O(2) and Cu(2)[bond]S(2) systems have been discussed by taking into account the difference in electron-donor ability of the pyridine nucleus between the Pym and Pye ligand systems.  相似文献   

19.
A trinuclear 3N-chelated monofunctional platinum complex, [Pt3(HPTAB)Cl3](ClO4)3 (HPTAB = N,N,N',N',N',N'-hexakis(2-pyridylmethyl)-1,3,5-tris(aminomethyl)benzene), has been structurally characterized, which binds to DNA and demonstrates much higher potency against the murine leukemia cell line (P-388) and the human nonsmall-cell lung cancer cell line (A-549) than cisplatin.  相似文献   

20.
Reactions of the ligand 2 ‐ MTPP [2‐MTPP = 2‐(methylthio)‐4‐(pyridin‐2‐yl)pyrimidine] with AgNO3 and CuI produced dinuclear silver(I) ( 1 ) and copper(I) ( 2 ) complexes, respectively. Both complexes adopt a chair‐like structure in which two 2 ‐ MTPP ligands and two metal ions are joined together through M–N and M–S coordination bonds. The luminescence properties of both complexes were investigated in solid state at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号