首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Were determined the immersion enthalpy in benzene and water for 24 carbonaceous materials, granular activated carbon and activated carbon monoliths prepared from African palm stone by chemical activation with H3PO4, ZnCl2 and CaCl2 solutions. The immersion enthalpies in benzene and water were exothermic, in accordance with a surface process that takes place between the solid and liquid. Benzene enthalpies for this set of solids were ?20.26 and ?181.1 J g?1 and water enthalpies were between ?7.42 and ?67.01 J g?1. The textural and chemical surface properties of the activated carbons were related to the immersion enthalpies. Since the evaluation of the porous structure was made with non-polar liquids with which the solid does not have a specific interaction, immersion enthalpy was proportional to the surface area accessible to liquid molecules, which was calculated from the enthalpic determinations based on the assumption of the existence of a direct relationship between the immersion enthalpy and the total area of the solid accessible to liquid molecules. The hydrophobic factor was calculated by dividing the immersion enthalpy in benzene and the immersion enthalpy in water; this is related to the acidity, basicity and hydrophobicity of the activated carbons.  相似文献   

2.
In this study, energetic interactions between activated carbon monoliths and various liquids were evaluated by determining immersion enthalpies in C6H6, H2O and aqueous solutions of NaOH and HCl. Immersion enthalpies depend on both the surface chemistry and the interactions between specific groups, and were compared with results from volumetric titrations. Immersion enthalpies of activated carbon monoliths were between ?95.85 and ?176.5 J g?1 for C6H6 and between ?11.19 and ?68.31 J g?1 for H2O; whereas immersion enthalpies in NaOH and HCl solutions were between ?20.36 and ?82.25 J g?1 and ?18.81 and ?96.16 J g?1, respectively. In support of these results, a high level of acidic groups was found on the surface of the activated carbon monoliths by Boehm volumetric titrations, with values between 719 and 1,290 g mol?1, in agreement with the higher immersion enthalpies observed in NaOH. Correlations were established between immersion enthalpies in the liquids and the surface chemistry properties of the activated carbon monoliths determined by volumetric titrations, demonstrating that immersion enthalpy is a useful parameter for characterisation of these materials in specific liquids.  相似文献   

3.
Excess molar enthalpies for the ternary system {x1 2-methoxy-2-methylpropane (MTBE) + x2 1-pentanol + (1  x1  x2) hexane} and the involved binary mixture {x 1-pentanol + (1  x) hexane}, have been measured at T = 298.15 K and atmospheric pressure over the whole composition range. We are not aware of the existence of previous experimental measurement of the excess enthalpy for the ternary mixture under study in the literature currently available. Values of the excess molar enthalpies were measured using a Calvet microcalorimeter. The results were fitted by means of different variable degree polynomials. The ternary contribution to the excess enthalpy was correlated with the equation due to Verdes et al. (2004), and the equation proposed by Myers–Scott (1963) was used to fit the experimental binary mixture measured in this work. Smooth representations of the results are presented and used to construct constant excess molar enthalpy contours on Roozeboom diagrams. The excess molar enthalpies for the binary and ternary system are positive over the whole range of composition. The binary mixture {x 1-pentanol + (1  x) hexane} is asymmetric, with its maximum displace toward a high mole fraction of decane. The ternary contribution is also positive with the exception of a range located around the rich compositions of 1-pentanol, and the representation is asymmetric.Additionally, the group contribution model of the UNIFAC model, in the versions of Larsen et al. (1987) [18] and Gmehling et al. (1993) [19] was used to estimate values of binary and ternary excess enthalpy. The experimental results were used to test the predictive capability of several empirical expressions for estimating ternary properties from binary results.  相似文献   

4.
Thermodynamic properties of the high-stability intermetallic compound nickel aluminide, NiAl, have been determined from mass-spectrometric, weight-loss effusion, and calorimetric measurements, using samples from a single preparation with a composition determined to be Ni0.986Al1.014. Per mole of NiAl molecules, the specific heat capacity at room temperature of 298 K is 48.54 J · K?1 · mol?1, with a linear temperature dependence of +0.0104 J · K?2 · mol?1. At the same temperature, the enthalpy of formation is ?133.7 kJ · mol?1, the entropy is about 53.8 J · K?1 · mol?1 and the enthalpy difference between room temperature and absolute zero is 7.97 kJ · mol?1. The Gibbs free-energy is ?130.2 kJ · mol?1 at T = 298 K, with a linear temperature dependence of +5.04 J · K?1 · mol?1. The Debye temperature is 452 K, while the electronic density-of-states at the Fermi-level is about 0.29 states per eV-atom. The NiAl+ ions were observed in the high-temperature mass spectra. Pressures for the gas at these temperatures were estimated and used with the results of quantum-mechanical calculations of total energy, specific heat, and entropy to calculate free-energy functions for the gas. These and additional results are compared with other measurements and discussed in terms of current theories of the electronic and structural properties of the compound.  相似文献   

5.
The solubility of anthracene was measured in pure water and in sodium chloride aqueous solution (salt concentration, m/mol · kg?1 = 0.1006, 0.5056, and 0.6082) at temperatures between (278 and 333) K. Solubility of anthracene in pure water agrees fairly well with values reported in earlier similar studies. Solubility of anthracene in sodium chloride aqueous solutions ranged from (6 · 10?8 to 143 · 10?8) mol · kg?1. Sodium chloride had a salting-out effect on the solubility of anthracene. The salting-out coefficients did not vary significantly with temperature over the range studied. The average salting-out coefficient for anthracene was 0.256 kg · mol?1.The standard molar Gibbs free energies, ΔtrG°, enthalpies, ΔtrH°, and entropies, ΔtrS°, for the transfer of anthracene from pure water to sodium chloride aqueous solutions were also estimated. Most of the estimated ΔtrG° values were positive [(20 to 1230) J · mol?1]. The analysis of the thermodynamic parameters shows that the transfer of anthracene from pure water to sodium chloride aqueous solution is thermodynamically unfavorable, and that this unfavorable condition is caused by a decrease in entropy.  相似文献   

6.
The heat capacity of polycrystalline germanium disulfide α-GeS2 has been measured by relaxation calorimetry, adiabatic calorimetry, DSC and heat flux calorimetry from T = (2 to 1240) K. Values of the molar heat capacity, standard molar entropy and standard molar enthalpy are 66.191 J · K?1 · mol?1, 87.935 J · K?1 · mol?1 and 12.642 kJ · mol?1. The temperature of fusion and its enthalpy change are 1116 K and 23 kJ · mol?1, respectively. The thermodynamic functions of α-GeS2 were calculated over the range (0 ? T/K ? 1250).  相似文献   

7.
The mobility of uranium under oxidizing conditions can only be modeled if the thermodynamic stabilities of the secondary uranyl minerals are known. Toward this end, we synthesized metaschoepite (UO3(H2O)2), becquerelite (Ca(UO2)6O4(OH)6(H2O)8), compreignacite (K2(UO2)6O4(OH)6(H2O)7), sodium compreignacite (Na2(UO2)6O4(OH)6(H2O)7), and clarkeite (Na(UO2)O(OH)) and performed solubility measurements from both undersaturation and supersaturation under controlled-pH conditions. The solubility measurements rigorously constrain the values of the solubility products for these synthetic phases, and consequently the standard-state Gibbs free energies of formation of the phases. The calculated lg solubility product values (lg Ksp), with associated 1σ uncertainties, for metaschoepite, becquerelite, compreignacite, sodium compreignacite, and clarkeite are (5.6 ?0.2/+0.1), (40.5 ?1.4/+0.2), (35.8 ?0.5/+0.3), (39.4 ?1.1/+0.7), and (9.4 ?0.9/+0.6), respectively. The standard-state Gibbs free energies of formation, with their 2σ uncertainties, for these same phases are (?1632.2 ± 7.4) kJ · mol?1, (?10305.6 ± 26.5) kJ · mol?1, (?10107.3 ± 21.8) kJ · mol?1, (?10045.6 ±24.5) kJ · mol?1, and (?1635.1 ± 23.4) kJ · mol?1, respectively. Combining our data with previously measured standard-state enthalpies of formation for metaschoepite, becquerelite, sodium compreignacite, and clarkeite yields calculated standard-state entropies of formation, with associated 2σ uncertainties, of (?532.5 ± 8.1) J · mol?1 · K?1, (?3634.5 ± 29.7) J · mol?1 · K?1, ( ?2987.6 ± 28.5) J · mol?1 · K?1, and (?300.5 ± 23.9) J · mol?1 · K?1, respectively. The measurements and associated calculated thermodynamic properties from this study not only describe the stability and solubility at T = 298 K, but also can be used in predictions of uranium mobility through extrapolation of these properties to temperatures and pressures of geologic and environmental interest.  相似文献   

8.
Using ZnCl2 activation we prepared a series of carbon electrodes from waste coffee grounds to study the effect of mesopores on double-layer capacitance in a tetraethyl ammonium tetrafluoroborate/acetonitrile electrolyte. The activated carbon with the largest mesopore volume achieved an energy density of 34 Wh kg?1 at low current loads, and significantly retained an energy density of 16.5 Wh kg?1 and specific capacitance of more than 100 F g?1 at fast charge–discharge rates (20 A g?1). The effect of mesopores on capacitance at fast charge–discharge rates is discussed.  相似文献   

9.
The immersion enthalpies in benzene, cyclohexane, water, and phenol aqueous solution with a concentration of 100 mg L?1 are determined for eight activated carbons obtained from peach seeds (Prunus persica) by thermal activation with CO2 at different temperatures and times of activation. The results obtained for the immersion enthalpy show values between ?4.0 and ?63.9 J g?1 for benzene, ?3.0 and ?47.9 J g?1 for cyclohexane, ?10.1 and ?43.6 J g?1 for water, and ?11.1 and ?45.8 J g?1 for phenol solution. From nitrogen adsorption isotherms, the surface area, micropore volume, and average pore diameter of the activated carbons were obtained. These parameters are related with the immersion enthalpies, and the obtained trends are directly proportional with two first parameters in the nonpolar solvents, which is a behavior of microporous activated carbons with hydrophobic character. Phenol adsorption from aqueous solution on activated carbons is proportional to their surface area and their immersion enthalpy in the solution.  相似文献   

10.
PbO2 thin films were prepared by pulse current technique on Ti substrate from Pb(NO3)2 plating solution. The hybrid supercapacitor was designed with PbO2 thin film as positive electrode and activated carbon (AC) as negative electrode in the 5.3 M H2SO4 solution. Its electrochemical properties were determined by cyclic voltammetry (CV), charge–discharge test and electrochemical impedance spectroscopy (EIS). The results revealed that the PbO2/AC hybrid supercapacitor exhibited large specific capacitance, high-power and stable cycle performance. In the potential range of 0.8–1.8 V, the hybrid supercapacitor can deliver a specific capacitance of 71.5 F g?1 at a discharge current density of 200 mA g?1(4 mA cm?2) when the mass ratio of AC to PbO2 was three, and after 4500 deep cycles, the specific capacitance remains at 64.4 F g?1, or 32.2 Wh Kg?1 in specific energy, and the capacity only fades 10% from its initial value.  相似文献   

11.

The change in the thermodynamic properties of triclosan adsorption on three activated carbons with the different surface chemistry was studied through immersion calorimetry and equilibrium data; the amount adsorbed of triclosan (Q) during calorimetry was determined and correlated with the energy associated with adsorbate–adsorbent interactions in the adsorption process. It was noted that triclosan adsorption capacity decreases with an increase in oxygenated surface groups. For an activated carbon oxidized with HNO3 (OxAC), the amount adsorbed was 8.50?×?10?3 mmol g?1, for a activated carbon without modification (GAC) Q?=?10.3?×?10?3 mmol g?1 and for a activated carbon heated at 1073 K (RAC1073) Q?=?11.4?×?10?3 mmol g?1. The adsorbed amounts were determined by adjusting the isotherms to the Sips model. For the activated carbon RAC1073, the immersion enthalpy (ΔHimm) was greater than those of the other two activated carbons due to the formation of interactions with the solvent (ΔHimmOxAC?=?? 27.3 J g?1?<?ΔHimmGAC?=?? 40.0 J g?1?<?ΔHimm RAC1073?=???60.7 J g?1). The changes in the interaction enthalpy and Gibbs energy are associated with adsorbate–adsorbent interactions and side interactions such as the adsorbate–adsorbate and adsorbate–solvent interactions.

  相似文献   

12.
N. Xaba  D. Jaganyi 《Polyhedron》2009,28(6):1145-1149
Hydroboration reactions of 4-octene with HBBr2 · SMe2, HBCl2 · SMe2 and H2BBr · SMe2 in CH2Cl2 were studied as function of concentration and temperature and compared with those of 1-octene. On average, hydroboration with dihaloborane proceeded 16 times slower for 4-octene than for 1-octene. In the case of the reactions with the monohaloborane, this factor is halved. This can be explained by the difference in the relative rates of dissociates of Me2S from the dihaloborane and a monohaloborane complex, respectively. The reactions involving H2BBr · SMe2 also exhibited a k?2 value, an indication of the presence of a parallel reaction, most likely a rearrangement process facilitating isomerization by way of a π-complex. The moderate ΔH values accompanied by small ΔS values (94 ± 4 kJ mol?1, ?3 ± 13 J K?1 mol?1 for HBBr2 · SMe2; 93 ± 1 kJ mol?1, ?17 ± 4 J K?1 mol?1 for HBCl2 · SMe2 and in the case of H2BBr · SMe2, 90 ± 13 kJ mol?1, +12 ± 44 J K?1 mol?1 and 83 ± 13 kJ mol?1, ?24 ± 45 J K?1 mol?1, respectively, for the k2 and k?2 processes) imply a process that is dissociatively dominated, with the overall mode of activation being interchange dissociative (Id).  相似文献   

13.
A way to calculate the enthalpic contributions of each component of the mixture of activated carbon and water to the immersion enthalpy using the concepts of the solution enthalpies is presented. By determining the immersion enthalpies of a microporous activated carbon in water, with values that are between –18.97 and −27.21 Jg−1, from these and the mass ratio of activated carbon and water, differential enthalpies for the activated carbon, ΔHDIFacH_{{\rm DIF}_{\rm ac}} and water, ΔHDIFwH_{{\rm DIF}_{\rm w}} are calculated, and values between –15.95 and –26.81 Jg−1 and between –19.14 and –42.45 Jg−1, respectively are obtained. For low ratios of the mixture, the components’ contributions to the immersion enthalpy of activated carbon and water differ by 3.20 Jg−1.  相似文献   

14.
Two pure hydrated lead borates, Pb(BO2)2·H2O and PbB4O7·4H2O, have been characterized by XRD, FT-IR, DTA-TG techniques and chemical analysis. The molar enthalpies of solution of Pb(BO2)2·H2O and PbB4O7·4H2O in 1 mol dm?3 HNO3(aq) were measured to be (?35.00 ± 0.18) kJ mol?1 and (35.37 ± 0.14) kJ mol?1, respectively. The molar enthalpy of solution of H3BO3(s) in 1 mol dm?3 HNO3(aq) was measured to be (21.19 ± 0.18) kJ mol?1. The molar enthalpy of solution of PbO(s) in (HNO3 + H3BO3)(aq) was measured to be ?(61.84 ± 0.10) kJ mol?1. From these data and with incorporation of the enthalpies of formation of PbO(s), H3BO3(s) and H2O(l), the standard molar enthalpies of formation of ?(1820.5 ± 1.8) kJ mol?1 for Pb(BO2)2·H2O and ?(4038.1 ± 3.4) kJ mol?1 for PbB4O7·4H2O were obtained on the basis of the appropriate thermochemical cycles.  相似文献   

15.
A polymeric activated carbon (PAC) was synthesized from the carbonization of a resorcinol–formaldehyde resin with KOH served as an activation agent. The nitrogen adsorption–desorption at 77 K, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared PAC. Compared with the commercial activated carbon (Maxsorb: Kansai, Japan), PAC shows superior capacitive performance in terms of specific capacitance, power output and high energy density as electrode materials for supercapacitors. PAC presents a high specific capacitance of 500 F g?1 in 6 mol l?1 KOH electrolyte at a current density of 233 mA g?1 which remained 302 F g?1 even at a high current density of 4.6 A g?1. The good electrochemical performance of the PAC was ascribed to well-developed micropores smaller than 1.5 nm, the presence of electrochemically oxygen functional groups and low equivalent series resistance.  相似文献   

16.
The adsorption process of 3-chloro phenol from aqueous solution on a activated carbon prepared from African palm stone and which presents a specific surface area of 685 m2 g−1, a greater quantity of total acid groups and a pHPZC of 6.8 is studied. The adsorption isotherms are determined at pH values of 3, 5, 7, 9 and 11. The adsorption isotherms are fitted to the Langmuir model and the values of the maximum quantity adsorbed that are between 96.2 and 46.4 mg g−1 are obtained along with the constant KL with values between 0.422 and 0.965 L mg−1. The maximum quantity adsorbed diminishes with the pH and the maximum value for this is a pH of 5. The immersion enthalpies of the activated carbon in a 3-chloro phenol solution of constant concentration, of 100 mg L−1, are determined for the different pH levels, with results between 37.6 and 21.2 J g−1. Immersion enthalpies of the activated carbon in function of 3-chloro phenol solution concentration are determined to pH 5, of maximum adsorption, with values between 28.3 and 38.4 J g−1, and by means of linearization, the maximum immersion enthalpy is calculated, with a value of 41.67 J g−1. With the results of the immersion enthalpy, maximum quantity adsorbed and the constant KL, establish relations that describe the adsorption process of 3-chloro phenol from aqueous solution on activated carbon.  相似文献   

17.
A series of triethylammonium halides (Et3NHCl, Et3NHBr, and Et3NHI) was synthesized. The crystal structures of the three compounds were characterized by X-ray crystallography. The lattice potential energies and ionic radius of the common cation of the three compounds were obtained from crystallographic data. Molar enthalpies of dissolution of the compounds at various values of molality were measured in the double-distilled water at T = 298.150 K by means of an isoperibol solution-reaction calorimeter. According to Pitzer’s theory, the values of molar enthalpies of dissolution at infinite dilution and Pitzer’s parameters of the compounds were obtained. The values of apparent relative molar enthalpies, relative partial molar enthalpies of the solvent and the compounds at different molalities were derived from the experimental values of molar enthalpies of dissolution of the compounds. Finally, hydration enthalpy of the common cation Et3NH+ was calculated to be ΔH+ = ?(150.386 ± 4.071) kJ · mol?1 by designing a thermochemical cycle.  相似文献   

18.
Charge-transfer (CT) complexes formed from the reactions of 4-nitropyrocatechol (4-nCat) as an electron acceptor with four amino alcohols: 2-aminoethanol, 1-amino-2-propanol, 4-aminobutanol and N-(2-hydroxyethyl)-1,3-diaminopropane (NHEDAP) as electron donors, have been studied spectrophotometrically in H2O and H2O/EtOH at 20, 25, 30, 35 and 40 °C. The calculated values of the oscillator strength and transition moment confirm the formation of CT-complexes. The thermodynamic and spectroscopic parameters were also evaluated for the formation of CT-complexes. The equilibrium constants ranged from 9.00 to 2.20 l mol?1 (M?1). These interactions are exothermic and have relatively large standard enthalpy and entropy changes (ΔH values ranged from ?15.58 to ?3.10 kJ mol?1; ΔS ranged from 26.81 to ?3.25 J K?1 mol?1). The solid CT-complexes have been synthesized and characterized by IR, NMR, mass spectrometry and thermal analysis. The photometric titration curves and other spectrometric data for the reactions indicated that the data obtained refer to the formation of 1:1 charge-transfer complex of [(4-nCat) (NHEDAP)] and 1:2 charge-transfer complexes of other amino alcohols [(4-nCat) (amino alcohol)2]. The effect of alkali and alkaline earth metals on increasing the equilibrium constant of the CT-complexation was also investigated.  相似文献   

19.
We describe a new apparatus suitable for measurements of the phase behaviour and phase properties of fluid mixtures under conditions of high-pressure. We propose a synthetic method for the determination of gas solubility, and present results for the system (CO2 + H2O). In addition, we report new measurements of the hydrate equilibrium curves in aqueous systems containing either pure carbon dioxide or mixed gases including CO2. For hydrates formed in the (CO2 + H2O) system, we find an enthalpy of dissociation of 77 kJ · mol?1. This value was unchanged by the addition of mass fraction 0.043 of NaCl to the water. Compared with pure CO2, mixtures of CO2 with air exhibited markedly different dissociation pressures at given temperature, but were characterised by the same enthalpy of dissociation. However, two mixtures containing either nitrogen or methane and hydrogen both exhibited a higher enthalpy of dissociation, 106 kJ · mol?1, consistent with these systems forming structure II hydrates.  相似文献   

20.
The molar enthalpies of reaction of metallic barium with 0.047 mol·dm−3 HClO4 as well as the molar enthalpies of dissolution of BaCl2 in 1.01 mol·dm−3 HCl and in water have been measured at T=298.15 K in a sealed swinging calorimeter with an isothermal jacket. From these results the standard molar enthalpy of formation of the barium ion in an aqueous solution at infinite dilution, as well as the enthalpies of formation of barium chloride and barium perchlorate, are calculated to be: ΔfH0m(Ba2+,aq)=−(535.83±1.25) kJ · mol−1; ΔfH0m(BaCl2,cr)=−(855.66±1.28) kJ · mol−1; and ΔfH0m(BaClO4,cr)=−(796.26±1.35) kJ · mol−1. The results obtained are discussed and compared with previous experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号