首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
为寻找质优价廉的析氢催化剂,本研究以废旧金属网为单室微生物电解池(MEC)阴极,在不同外加电压下考察其制氢性能. 同时利用16S rDNA扩增测序技术分析原接种污泥、MFC和MEC阳极微生物的菌落特点. 实验结果表明,随着外加电压的增大,MEC产生的最大电流密度和周期运行时间分别呈现增大和缩短的趋势. 外加0.7 V电压时,废旧金属网阴极MEC的氢气产率和电能回收率分别达到0.330±0.012 m3H2·m-3·d-1和177.0±5.6%,远高于0.5 V时的数值,与0.9 V时相差不大. 废旧金属网阴极MEC的产氢能力可以和Pt/C阴极MEC相媲美,且具有良好的运行稳定性. 16S rDNA扩增测序结果显示培养环境对微生物的富集与淘汰有很大影响. 在外加电场环境中MEC阳极的优势菌落地杆菌属(Geobacter)得到很大程度富集,相对丰度高达79.4%以上.  相似文献   

2.
高效析氢催化剂的制备仍是目前亟待解决的重要课题.本研究采用液相浸渍原位还原法制备了Ni(OH)2/Ni/g-C3N4复合催化剂,并与碳纸(CP)组合作为微生物电解电池(MEC)的阴极.采用SEM、TEM、XRD、XPS和电化学分析等技术对所制备的催化剂样品的结构性质和析氢电催化性能进行了分析研究.结果表明,Ni(OH)...  相似文献   

3.
用于生物电化学系统的石墨烯电极新进展   总被引:1,自引:0,他引:1  
可持续社会的发展需要成本低, 并从废物或废水中提取能源或将能源转化为产品的环境友好技术. 近年兴起的生物电化学系统(BESs)利用微生物催化不同电化学反应, 是将废物或废水中能量转化为电能等多种产品的发展前景广阔的新技术. 当有关反应的吉布斯自由能小于零, 系统输出电能, 此时的BESs即为微生物燃料电池(MFCs); 相反, 若反应的吉布斯自由能为正值, 此时的BESs被称为微生物电解电池(MECs). 随着研究工作的不断深入和拓展, BESs的电极性能已成为制约其应用的瓶颈. 石墨烯以其独特的结构和优异的材料性能在BESs领域, 特别是MFCs中得以应用. 本文参考了最新的文献资料, 综述了石墨烯应用于BESs的发展现状, 包括应用于MFCs的石墨烯电极、掺杂石墨烯电极、担载石墨烯电极, 对其在MECs中可能的应用, 以及未来发展趋势予以展望.  相似文献   

4.
微生物燃料电池(Microbial fuel cell,MFC)是一种利用微生物将化学能直接转化为电能的装置.近年来,除改善微生物燃料电池的输出性能外,研究者也不断开发其在传感分析中的应用.基于微生物燃料电池的传感分析装置无需外加电源,具有操作简单、可连续检测等优点,是一种极具应用前景的传感分析技术.本文依据这些传感分析装置的用途进行分类,主要综述了微生物燃料电池在检测分析生化需氧量(BOD)、挥发性脂肪酸、毒性物质、微生物活性和数量以及其它方面的研究,并对其发展趋势和应用前景进行了展望.  相似文献   

5.
微生物燃料电池生物阴极   总被引:1,自引:0,他引:1  
陈立香  肖勇  赵峰 《化学进展》2012,24(1):157-162
微生物燃料电池(microbial fuel cells, MFCs)利用微生物处理废水的同时产电,是一种清洁可再生能源技术。近年来新兴起的生物阴极是指阴极室中的功能微生物附着在电极表面形成生物膜,电子由电极传递给微生物并发生相应的生物电化学反应;是微生物燃料电池研究的一个重要方向。本文根据厌氧、好氧操作体系的不同将生物阴极进行分类;归纳总结了微生物组成、电极和分隔材料的研究进展,探讨了生物阴极在去除污染物和生成高附加值产品中的实际应用,并提出了其将来发展的可能方向。  相似文献   

6.
甲醇自热重整制氢反应分析   总被引:5,自引:2,他引:3  
甲醇自热重整制氢反应是车载燃烧电池氢源的理想方式,本文应用ZnO/Cr2O3催化剂MOR-67上的宏观动力学,模拟分析了甲醇自热重整制反应器,合适的反应器为绝热径向反应器,对于本反应器一维拟均相模拟结构表明;适宜的水/醇比为2(常压)或3(低压);压力0.2MPa-0.3MPa。  相似文献   

7.
通过电沉积的方法获得了一种具有均匀孔隙结构的海绵状二氧化锰催化剂,结合扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)等手段表征了所制备材料的表面形貌、结构及元素构成和赋存价态,采用线性伏安扫描(LSV)法对电沉积材料的电化学性能进行分析,考察其催化氧还原反应的活性,最后以合成的材料为阴极催化剂,构建微生物燃料电池系统,考察其在微生物燃料电池中的应用效果。结果表明,以电沉积二氧化锰为阴极催化剂的微生物燃料电池最大功率密度为975.6 mW/m~2,是以商业二氧化锰为阴极催化剂的电池的1.7倍;这表明作为一种经济、高效、环境友好的阴极氧还原催化剂,电沉积法制备的二氧化锰为实现阴极催化剂的低成本制备以及微生物燃料电池放大化推进提供了新的研究途径。  相似文献   

8.
目前,化石能源日益枯竭和二氧化碳排放导致的温室效应引起了世界各国的高度关注。约五分之一的二氧化碳是由使用化石燃料的交通工具所导致的。氢能是人类至今为止已知的、最为理想的清洁能源,使用零排放的氢燃料电池驱动交通工具是减少二氧化碳排放的有效手段之一。世界各国把氢能作为战略能源进行研究,我国既是能源短缺国,又是能源消耗最大的国家之一。《国家中长期科学和技术发展规划纲要》明确指出,能源是未来15年我国科技发展的重要领域,清洁能源低成本规模化开发利用则是重点领域和优先主题。 本文将将简要介绍课题组在铝基材料制氢技术、多孔金属有机框架化合物(MOFs)材料储氢技术、基于石英微天平的氢气安全检测技术和生物燃料电池的有关研究工作。  相似文献   

9.
微生物纳米导线是指在缺少可溶性电子受体的条件下由微生物形成类似菌毛的导电附属物,通过它传递电子是微生物为提高胞外电子传递效率而进化形成的一种有效的电子传递方式。微生物可利用具有高效导电特性的纳米导线将电子传递到远离细胞表面的地方,从而使微生物摆脱了需要直接接触胞外电子受体(Fe(Ⅲ)氧化物或电极)才能传递电子的限制。微生物纳米导线的发现丰富了人们对胞外呼吸多样性的认识,同时其在提高微生物燃料电池产电效率、促进环境中有机污染物的快速降解和生物能源等方面具有重要的应用前景,成为了当前研究的前沿和热点。本文简单介绍了微生物纳米导线的基本特性和产生纳米导线的微生物种类,重点阐述了由Geobacter和Shewanella微生物生成的纳米导线电子传递机制以及其在生物能源和生物修复等方面的应用,并展望了今后的研究重点。  相似文献   

10.
以V2O5为原料,利用电解还原方法制备三价钒电解液,此电解液蒸发结晶后得到的V2(SO4)3固体,可组装成固体钒电池。固体钒电池在5 mA/cm2时电池的能量效率可达94.00%,比液流钒电池高出6%;其能量密度为54.18 Wh/kg,是液流钒电池的两倍。充放电实验结果表明,所制备V2(SO4)3固体电化学活性高,所用固体钒电池有望应用于移动电源和动力汽车。  相似文献   

11.
微生物燃料电池   总被引:2,自引:0,他引:2  
刘宏芳  郑碧娟 《化学进展》2009,21(6):1349-1355
微生物燃料电池 (Microbial Fuel Cells,MFCs) 是一种利用微生物作为催化剂,将燃料中的化学能直接转化为电能的装置。本文首先简要介绍了MFCs 的发展简史和基本原理,针对MFCs 产电性能低的现状,分别从产电微生物、电池结构、质子交换膜(PEM)、电极以及电解液等方面着重综述了近几年有关提高MFCs 产电性能的研究进展。最后介绍了关于MFCs 的另一些有趣的研究方向:植物MFCs,生物阴极MFCs,以及污水脱氮和有毒废水处理。  相似文献   

12.
Microbial electrolysis cells (MECs) present an attractive route for energy-saving hydrogen (H2) production along with treatment of various wastewaters, which can convert organic matter into H2 with the assistance of microbial electrocatalysis. However, the development of such renewable technologies for H2 production still faces considerable challenges regarding how to enhance the H2 production rate and to lower the energy and the system cost. In this review, we will focus on the recent research progress of MEC for H2 production. First, we present a brief introduction of MEC technology and the operating mechanism for H2 production. Then, the electrode materials including some typical electrocatalysts for hydrogen production are summarized and discussed. We also highlight how various substrates used in MEC affect the associated performance of hydrogen generation. Finally we presents several key scientific challenges and our perspectives on how to enhance the electrochemical performance.  相似文献   

13.
通过水热法合成了一系列MoS2/GQDs复合材料,并制成碳基复合电极。利用电化学测试手段挑选出最佳电极后用于微生物电解池(MEC)阴极的产氢性能研究。实验结果显示: Na2MoO4、半胱氨酸和GQDs的最佳原料配比为375:600:1,制备出的MoS2/GQDs呈现明显的爆米花样纳米片结构,片层厚度在10 nm左右,当碳纸负载量为1.5 mg·cm-2时,MoS2/GQDs碳纸电极的析氢催化能力最佳。在MEC产氢实验中,MoS2/GQDs阴极MEC的产气量、氢气产率、库仑效率、整体氢气回收率、阴极氢气回收率、电能回收率和整体能量回收率分别为51.15±3.15 mL·cycle-1、0.401±0.032 m3H2·m3d-1、91.16±0.054%、66.64±5.39%、72.44±2.60%、217.26±7.42%和77.37±1.50%,均略高于Pt/C阴极MEC或与之媲美。另外,MoS2/GQDs具有良好的长期稳定性,且价格便宜,有利于实际应用。  相似文献   

14.
微生物燃料电池电极材料研究进展   总被引:1,自引:0,他引:1  
次素琴  吴娜  温珍海  李景虹 《电化学》2012,18(3):243-251
微生物燃料电池以微生物为催化剂将化学能直接转化成电能,可用于废水处理并产生电能,是一种极具应用前景的生物电化学技术. 本文综述了近年来微生物燃料电池电极材料的制备、功能修饰及表面构建等的研究进展,着重介绍了炭基纳米材料的微结构与成分对微生物燃料电池性能的影响,并分析了微生物燃料电池电极材料现存的主要问题,以期不久的将来微生物燃料电池能付之实用.  相似文献   

15.
Hydrogen gas is a green energy carrier with great environmental benefits. Microbial electrolysis cells (MECs) can convert low‐grade organic matter to hydrogen gas with low energy consumption and have gained a growing interest in the past decade. Cathode catalysts for the hydrogen evolution reaction (HER) present a major challenge for the development and future applications of MECs. An ideal cathode catalyst should be catalytically active, simple to synthesize, durable in a complex environment, and cost‐effective. A variety of noble‐metal free catalysts have been developed and investigated for HER in MECs, including Nickel and its alloys, MoS2, carbon‐based catalysts and biocatalysts. MECs in turn can serve as a research platform to study the durability of the HER catalysts. This personal account has reviewed, analyzed, and discussed those catalysts with an emphasis on synthesis and modification, system performance and potential for practical applications. It is expected to provide insights into the development of HER catalysts towards MEC applications.  相似文献   

16.
代谢物组学、基因组学、转录组学和蛋白质组学是系统生物学研究的重要组成部分。近年来,在代谢物组学领域,微生物代谢物组学的研究受到人们的重视,成为研究的热点。本文综述了微生物代谢物组学的研究方法,包括样品处理、分析平台、数据处理和生物学解释等,并讨论了微生物代谢物组学在代谢工程方面的应用潜力,以及微生物代谢物组学的研究前景和所面临的挑战。  相似文献   

17.
基于杂多酸的固体高质子导体*   总被引:1,自引:0,他引:1  
刘镇  吴庆银  宋小莉  马赛 《化学进展》2009,21(5):982-989
杂多酸固体高质子导体在燃料电池、传感器和电显色装置等方面具有潜在的应用前景。本文概述了杂多酸的质子导电性,归纳了其质子导电性的一些规律,以表格形式列举了各类杂多酸的电导率。将不同质量分数的杂多酸固载在各类固体基质上,可以对杂多酸质子导电材料改性以便于工业中实际应用。这些杂化材料兼有杂多酸的高质子导电性以及基质的稳定性与机械延展性。本文综述了近几年来新型杂多酸,杂多酸-无机基质复合材料,杂多酸-有机基质复合材料,杂多酸-多元基复合材料的质子电导率、稳定性、结构形态等等方面的研究进展,详细介绍了杂多酸在质子交换膜燃料电池中的应用,并对杂多酸固体高质子导体的应用前景进行了展望。  相似文献   

18.
吴晓晖  郭航  叶芳  马重芳 《化学进展》2009,21(6):1344-1348
微型燃料电池被认为可作为便携式电子设备的下一代电源而越来越受到关注。传统的石墨、金属等材料用于微型燃料电池时产生了不少问题,如石墨材料微加工性能差,金属易腐蚀、密度较大等不利于应用于便携式设备。硅材料因为其低的气体透过率、高的导热系数和适于微加工等特性在微型质子交换膜燃料电池中得到了越来越多地应用。本文对硅材料在微型燃料电池的气体扩散层、质子交换膜构造中的应用以及硅材料作为基底制作微型燃料电池技术的进展进行了综述,并对硅材料在微型燃料电池领域应用的技术特点及前景做了分析与讨论。  相似文献   

19.
宋昌盛  叶汝强  牟伯中 《化学进展》2009,21(6):1118-1123
微生物脂肽是一类具有很强表面活性和生物特性的生物表面活性剂。脂肽分子由亲水的肽链和疏水的脂肪烃链两部分组成,由于其特殊的化学组成和两亲性分子结构,脂肽类生物表面活性剂在医药、食品、化妆品、环境修复和微生物采油等领域具有良好的应用潜力。表面活性素是一类典型的微生物脂肽化合物,这主要是因为它除了具有表面活性外,还具有抗菌、抗病毒等生物活性。表面活性和生物活性主要在界面处发生,并受到活性分子在亲水/疏水界面上的分子形态的影响。本文重点以表面活性素为评述对象,综述了近年来微生物脂肽在气/液界面上分子形态的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号