首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
馏分油浆态床加氢处理研究 I 催化剂制备方法   总被引:2,自引:2,他引:0  
对浆态床加氢催化剂的制备方法、助剂和活性组分负载量进行了考察。研究结果表明,最佳的催化剂(SP25)制备方法为,采用一定粒度的γ-Al2O3微球作载体,浸渍四硫代钼酸铵的络合剂水溶液,120℃干燥12 h,然后浸渍硝酸镍和磷酸二氢铵的水溶液,120℃干燥12 h,在氮气气氛中500℃焙烧3 h。SP25催化剂的主要物性为比表面积212.3 m2/g,孔径11.3 nm,孔容0.60 mL/g,平均粒度17.3μm,骨架密度2.79 g/cm3。制成的催化剂活性组分为硫化态,使用时不需进行预硫化。XRD和H2-TPR表征结果表明,浸渍液中加入络合剂可以提高MoS2在载体表面的分散度。在反应温度350℃,压力6 MPa,反应时间2 h,催化剂加入量6%(占原料油质量)的反应条件下,催化剂对FCC柴油的脱硫率为85.1%,脱氮率为82.0%。  相似文献   

2.
Mn改性Ni/K/MoS2合成低碳醇催化剂反应性能研究   总被引:4,自引:0,他引:4  
以不同的添加方式在Ni/K/MoS2催化剂中加入Mn助剂,考察其合成醇反应性能。结果表明,Mn/Ni/K/MoS2催化剂具有较好的合成低碳混合醇反应性能。共沉淀法以醋酸锰为前驱体加入0.6%的Mn助剂后,C2+含量,醇时空产率及选择性均明显提高;分步沉淀法使Mn的加入量增加到0.6%,醇时空产率明显增加。以浸渍法按化学计量加入Mn助剂考察其含量对催化剂合成醇性能的影响,当Mn/Mo(原子比)为1∶时,反应条件为315 ℃, 9.5 MPa, 6 000 h-1,醇时空产率和醇选择性分别达到最高值0.338?g/mL·h和69.6%。300 h的稳定性测试结果表明,共沉淀法改性的催化剂具有良好的稳定性。  相似文献   

3.
在实验室小型流化床反应器中研究了福建龙岩无烟粉煤纸浆黑液富氧催化气化的特性,考察了纸浆黑液催化剂添加量不同时氧体积分数变化对碳转化率、产气率、煤气组成与热值的影响。结果表明,纸浆黑液催化和富氧气体燃烧的双重作用明显地提高了煤的碳转化率和煤气有效组成;纸浆黑液中钠碱对煤焦气化的催化与对煤灰分中SiO2和Al2O3等氧化物的熔制反应同时发生并存在着竞争;纸浆黑液中钠碱对高温碳与气化剂之间多种反应表现出不同程度的促进。龙岩无烟粉煤在纸浆黑液富氧催化气化时适宜操作条件是氧的体积分数40%和蒸汽/富氧比为1.4kg/m3~2.0kg/m3。碳转化率94%、煤产气率为3.62m3/kg、煤气热值为7.33mJ/m3。  相似文献   

4.
煤和生物质共气化制备富氢气体的实验研究   总被引:2,自引:0,他引:2  
在煤处理量为8kg/h的小型流化床反应器上,以富氧空气和水蒸气为气化介质,对煤和生物质共气化制取富氢燃气进行了实验研究。在850℃~1 050℃主要考察了空气当量比、水碳比、生物质比例和生物质种类对燃气组成和气体产率的影响。结果表明,对煤和稻草混合体系,稻草质量比为33%时,空气当量比增加,CO2含量显著增加,H2、CO和CH4含量减少,气体产率增加;水碳比增加,CO2和CH4含量增加,CO和H2含量减小,气体产率先增加后减小;生物质比例增加,CO2、H2和CH4含量增加,CO含量降低,气体产率先增加后减小,当生物质比例小于50%时,可以实现体系的稳定运行。对于三种不同的煤与生物质混合体系,煤与高粱秆共气化所得煤气中H2含量最高,气体产率的顺序为:煤/木屑煤/高粱秆煤/稻草煤。实验中H2在煤气中的体积分数最高可达37.25%,最大产率为0.54m3/kg。  相似文献   

5.
采用柠檬酸盐凝胶法制备出纳米CuO-ZnO-ZrO_2(CZZ)催化剂,应用XPS、BET、XRD、H_2-TPR、H_2-TPD、CO_2-TPD和TG-DTA等检测手段对催化剂及前驱体的结构进行表征。研究了湿凝胶干燥时间和柠檬酸用量对催化剂结构的影响,并与燃烧法制得的催化剂进行对比,考察了不同催化剂CO_2加氢制甲醇的性能。研究表明,延长湿凝胶干燥时间可有效防止催化剂焙烧时发生喷溅,有利于催化剂中各组分的分散,提高催化剂对H_2和CO_2的吸附能力;112℃干燥48h制得的催化剂(CZZ-48h)BET比表面积为43.5m~2/g,高于燃烧法;柠檬酸用量等于化学计量比时催化剂的性能最佳,在240℃、2.6MPa、空速为3600h-1、H_2/CO_2(体积比)为3的条件下甲醇时空收率达109.4g/(kg·h);柠檬酸过量会影响催化剂组分的分散度,并造成分解残留覆盖催化剂表面活性位而不利于CO_2加氢反应。  相似文献   

6.
CuO-MnO2/Al2O3 催化臭氧化催化剂的制备、结构表征及性能   总被引:1,自引:0,他引:1  
采用浸渍法,以Al2O3为载体制备了氧化铜和二氧化锰复合的双组分负载型金属催化臭氧化催化剂.以松花江水的UV254去除率作为催化剂活性指标,通过正交试验,确定了催化剂的最佳制备条件.实验结果表明,催化剂的最佳制备条件如下:浸渍5h,活性组元体积比为3:1,于90℃干燥2h,于200℃焙烧3h.采用扫描电镜对催化剂的结构进行了表征;通过TG-DTA测试分析了催化剂热分解过程的反应速率、热效应和物质变化过程;运用XPS分析了催化剂表面元素的组成、元素相对含量和元素价态.  相似文献   

7.
在0.75mol·L-1硫酸溶液中,抗坏血酸可将Mo6+还原为Mo5+,而硫氰酸铵能与生成的Mo5+显色,在波长465nm处有最大吸收峰,据此提出了一种流动注射-分光光度法测定钴钼催化剂浸渍液中超高浓度钼离子含量的方法。钼的质量浓度在3.3~93.3g·L-1范围内与其ΔA呈线性关系,方法的检出限(3s/k)为0.35g·L-1。方法用于钴钼催化剂浸渍液中钼离子含量的测定,测得方法的回收率在95.0%~101%之间,测定值的相对标准偏差(n=11)小于1%。  相似文献   

8.
采用浸渍法,以Al2O3为载体制备了氧化铜和二氧化锰复合的双组分负载型金属催化臭氧化催化剂,以松花江水的UV254去除率作为催化剂活性指标,通过正交试验,确定了催化剂的最佳制备条件,实验结果表明,催化剂的最佳制备条件如下:浸渍5h,活性组元体积比为3:1,于90℃干燥2h,于200℃焙烧3h,采用扫描电镜对催化剂的结构进行了表征;通过TG-DTA测试分析了催化剂热分解过程的反应速率、热效应和物质变化过程;运用XPS分析了催化剂表面元素的组成、元素相对含量和元素价态。  相似文献   

9.
本研究以价格低廉、来源广泛的煤沥青作为炭前驱体、尿素作为氮源和模板、氢氧化钠作为活化剂,通过结合模板法与化学活化法成功制备了具有纳米片状结构的氮氧共掺杂的多孔炭材料。多孔炭电极在0.05 A/g时最大比容量高达255.5 m A·h/g,在电流密度为1 A/g时,放电比容量达到78 m A·h/g。经过12000次循环,容量保持率仍有72.4%,并且能量密度最高达到99.6 W·h/kg,展现出作为正极材料的巨大潜力。以煤沥青为原料制备的氮氧共掺杂多孔炭材料作为锌离子混合超级电容器的正极材料表现出了优异的电化学性能。  相似文献   

10.
分析和比较石杉碱甲干燥前和干燥后的引湿性。使用动态水分吸附分析法(Dynamic Vapor Sorption,DVS)对石杉碱甲的引湿性进行研究。采用卡式水分测定方法测定了石杉碱甲干燥前和干燥后的水分。石杉碱甲干燥前与干燥后均有引湿性,导致含量结果测定存在误差。DVS结果显示引湿增重7%即可达到平衡。将样品置于相对湿度75%、温度15℃恒温恒湿箱中15天引湿后测得水分为7.30%,经DVS考察不再引湿,能准确地测定石杉碱甲的含量。并用高效液相色谱法测定石杉碱甲的含量的均一性。  相似文献   

11.
福建无烟粉煤催化气化   总被引:16,自引:5,他引:16  
报导了福建无烟粉煤在碱性催化剂作用下的催化气化工作进展,在小型Φ18mm固定床与Φ20mm流化床中,进行了水蒸气气化、混合气(空气/水蒸气)气化,采用复合1催化剂添加量8%,850~900℃及流化床条件下,即可获得产气率V>3m3/kg煤(无催化剂时,V<1.6m3/kg煤)及煤气热值QLVH>9MJ/m3(水蒸气气化)与>6MJ/m3(混合气气化)的结果,并与无烟煤气化的工业装置进行了比较,这为无烟粉煤有效转化的工业化试验提供了最重要的依据  相似文献   

12.
纳米α-FeOOH催化剂一段法脱除COS和H2S性能的研究   总被引:11,自引:1,他引:11  
利用均相沉淀法、氨水滴定法制备纳米α-FeOOH粒子,以该粒子为活性组分制备催化剂,利用微反-色谱联用活性评价技术,在常压、空速10 000 h-1、25 ℃~60 ℃温度范围内考察了纳米α-FeOOH催化剂对COS催化水解的活性。采用热重法对纳米α-FeOOH催化剂脱除H2S的性能进行了研究。结果表明:纳米α-FeOOH催化剂对COS水解在低温度、大空速下具有高的活性,系列Ⅰ和系列Ⅱ催化剂分别在60 ℃和40 ℃~45 ℃时COS转化率达到100%。在60 ℃时各种催化剂吸附H2S的能力最强,最高饱和硫容可达到21.72w%。催化剂表面能量分布不均匀,COS催化水解在低温时存在补偿效应。  相似文献   

13.
固体热载体热解淮南煤实验研究   总被引:6,自引:3,他引:3  
自制处理量为1 kg煤的间歇式固体热载体热解装置,以淮南烟煤为原料,石英砂作热载体,对该煤进行热解特性评价实验。考察了热载体初始温度700 ℃~900 ℃、反应 4 min~16 min、煤粒径及热载体与煤的质量比5~9对热解产物产率和性质的影响。结果表明,提高热载体初始温度,气、液产率增加;延长反应时间和提高热载体比例,气体产率有所增加;热载体初始温度对热解气组成影响显著。提高热载体与煤的质量比和热载体初始温度,可以抑制半焦对热解反应器内壁的黏附。  相似文献   

14.
以低活性福建无烟粉煤为原料,采用腐植酸型煤黏结剂,制得腐植酸型煤。比较研究型煤和无烟煤在常压条件下的气化动力学和气化特性。运用等温热重法,在900~1 150℃进行水蒸气气化实验,测定了型煤和无烟煤的反应速率、转化率与时间的关系,考察了常压下温度和煤样对气化反应的影响。采用积分缩核模型对实验数据进行拟合关联,得到煤样水蒸气气化反应的动力学参数。结果表明,型煤的气化反应活化能(102.0 kJ/mol)低于福建无烟煤(122.5 kJ/mol)。950℃下型煤的化学反应性(80.0%)优于福建无烟煤(33.0%)。型煤较福建无烟煤表现出更好的化学反应性,可代替优质块煤用于工业固定床煤气化。  相似文献   

15.
CuO/γ-Al2O3脱除烟气中SO2的研究   总被引:6,自引:5,他引:6  
将CuO/γ-Al2O3用于烟气脱硫研究。考查了脱硫剂制备参数及反应条件对CuO/γ-Al2O3脱硫活性的影响。并对不同载铜量的脱硫剂进行了XRD表征。结果表明,载铜量的质量分数为8%~10%时,脱硫剂具有较高的脱硫活性,高于10%的载铜量致使活性组分CuO在Al2O3表面发生多层覆盖,活性位的利用率下降;在350 ℃~500 ℃的烟气温度及 3 000 L/kg·h~56 000 L/kg·h的操作空速范围内,CuO/γ-Al2O3具有较高的脱硫活性,烟气中的O2对于CuO/γ-Al2O3的脱硫活性是必需的,水的影响不大。  相似文献   

16.
采用黏胶废液为催化剂,对福建尤溪无烟粉煤在常压热分析仪中的水蒸气催化气化动力学进行了研究。在850℃~950℃测定了黏胶废液催化剂添加量(NaOH浓度为计算基准)从0~12%时的碳转化率随气化时间的变化,表明黏胶废液具有提高碳转化率和气化速率的作用,同时确定了该黏胶废液催化剂的加载饱和浓度。基此得出的尤溪无烟粉煤水蒸气催化气化反应动力学符合缩芯模型,并给出相应的动力学参数。进而分析表明,该催化气化过程存在明显的补偿效应,最后给出黏胶废液对尤溪无烟粉煤水蒸气催化气化包括补偿效应的动力学方程。  相似文献   

17.
在三相淤浆床-固定床反应装置中,研究含氮合成气直接合成二甲醚。使用双功能混合催化剂,粒度为0.15 mm~0.18 mm。在220 ℃~260 ℃、3.0 MPa~7.0 MPa、空速1 000 mL·g-1·h-1时考察了温度、压力及两种反应器中催化剂的装填比例对CO转化率及二甲醚选择性的影响。结果表明,一氧化碳转化率随反应压力的增加而提高,随着温度升高二甲醚的选择性变化不大,CO转化率的升高较明显,因此在催化剂活性适宜的温度范围内,该反应装置可以采用较高的反应温度。当260 ℃、7.0 MPa、三相床与固定床中催化剂比例为1∶1时,CO的转化率可达84.5%,二甲醚的选择性为78.7%。淤浆床-固定床反应装置具有操作稳定性好、CO转化率高的优点。催化剂在该装置中反应370 h活性没有明显下降。  相似文献   

18.
考察了制备参数及反应条件对蜂窝状堇青石基CuO/Al2O3催化剂同时脱硫脱硝活性的影响。结果表明,添加碱金属可以提高脱硫活性, 但由于促进NH3氧化而降低了脱硝活性。为了获得理想的同时脱硫脱硝活性,催化剂的适宜载铜量为6.0%,载钠量为2.0%。随着反应温度从350 ℃升高到450 ℃,该催化剂的脱硫活性逐渐升高,再生后脱硫活性都有所下降,但仍具有活性随温度升高而升高的趋势,说明脱硫过程为反应控制型;但由于温度升高,NH3氧化加剧,脱硝活性逐渐降低,所以适宜操作温度为400 ℃。在1 450 h-1~3600 h-1范围内, 空速对脱硝活性影响不大, 对脱硫活性影响较大。 对于再生催化剂,当空速由3 600 h-1降低到2 300 h-1时,硫容(SO2转化率达80%时单位质量催化剂所吸附的SO2量)不断增加,继续降低空速时硫容基本保持不变,所以适宜操作空速为2 300 h-1以下。  相似文献   

19.
炭分子筛的制备及表面结构   总被引:1,自引:1,他引:1  
以大庆石油焦为原料,采用KOH活化法,考察了碱炭比、活化温度、活化时间对吸附性能的影响,确定最佳工艺条件,碱炭比4∶1、活化温度800 ℃、活化时间2 h。并制得比表面积大于3 000 m2/g的超级活性炭。通过热处理得到孔径均一(中孔率>85%),比表面积大于1 500 m2/g的炭分子筛;再用表面氧化方法,得到表面酸度适宜(150 ℃~240 ℃之间为弱酸,240 ℃~340 ℃为中强酸,340 ℃~450 ℃为强酸分布)的催化剂载体。炭分子筛与传统氧化铝比较具有酸度分布广泛等特点,因较好的酸强度分布,可以增强载体与金属离子之间的作用力,增加负载量。因此,经氧化后的炭分子筛更适于作催化剂载体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号