首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Silicon nanocrystals were prepared by Si+-ion implantation and subsequent annealing of SiO2 films thermally grown on a c-Si wafer. Different implantation energies (20-150 keV) and doses - cm -2 ) were used in order to achieve flat implantation profiles (through the thickness of about 100 nm) with a peak concentration of Si atoms of 5, 7, 10 and 15 atomic%. The presence of Si nanocrystals was verified by transmission electron microscopy. The samples exhibit strong visible/IR photoluminescence (PL) with decay time of the order of tens of μs at room temperature. The changes of PL in the range 70-300 K can be well explained by the exciton singlet-triplet splitting model. We show that all PL characteristics (efficiency, dynamics, temperature dependence, excitation spectra) of our Si+-implanted SiO2 films bear close resemblance to those of a light-emitting porous Si and therefore we suppose similar PL origin in both materials. Received 1st September 1998 and Received in final form 7 September 1999  相似文献   

2.
KrF excimer laser annealing on ultrathin hydrogenated amorphous Si films with various initial Si thicknesses is carried out to obtain a single layer of nanocrystalline Si structures. It is found that Si nanograins can be obtained with the area density as high as 10^11 cm^-2 under the irradiation with suitable laser fluence. Raman and planar transmission electron microscopy are used to characterize the formation process of Si nanocrystals from amorphous phase. Moreover, a strong photoluminescence is observed at room temperature from well-relaxed nanocrystalline Si structures.  相似文献   

3.
The light-emitting properties of cubic-lattice silicon carbide SiC films grown on Si(100) and Si(111) substrates with VPE at low temperatures (T gr ∼ 700°C) are discussed. Investigations of the grown films reveal a homogeneous nanocrystalline structure involving only the 3C-SiC phase. When the electron subsystem of the structure is excited by a He-Cd laser emitting at λexit = 325 nm, the photoluminescence (PL) spectra contain a rather strong emission band shifted by about 3 eV toward a short-wave spectral region. At low temperatures, the PL integral curve is split into a set of Lorentz components. The relation between these components and the peculiarities of the energy spectrum of electrons in the nanocrystalline grains of the silicon carbide layers is discussed.  相似文献   

4.
Thin films consisting of the layers of phosphorus (P) and boron (B) co-doped Si nanocrystals (Si-ncs) and glass spacer layers were prepared and their photoluminescence properties were studied. Cross-sectional TEM observations revealed the growth of Si-ncs with narrow size distributions. The samples exhibited PL below the band gap energy of bulk Si crystal at room temperature. The low-energy PL is considered to arise from the transitions between donor and acceptor states in compensated Si-ncs. The successful formation of narrow size distribution co-doped Si nanocrystals promotes the study of the optical properties of compensated Si nanocrystals.  相似文献   

5.
嵌埋在SiO2基质中的nc-Ge的制备及其发光现象   总被引:1,自引:1,他引:0       下载免费PDF全文
贺振宏  陈坤基  冯端 《物理学报》1997,46(6):1153-1160
采用等离子体化学汽相淀积技术生长a-GexSi1-x∶H薄膜,然后在800℃,105Pa下于传统开口管式炉中氧化热处理,制备嵌埋在SiO2中的nc-Ge微晶粒.利用傅里叶变换红外光谱、喇曼光谱和X射线衍射谱分析样品的微结构,研究a-GexSi1-x∶H薄膜的氧化过程中发生的化学和物理变化,并用平衡态化学反应热理论加以解释.在某些样品中观察到室温下的光致发光现象,采用Brus电 关键词:  相似文献   

6.
The characteristics of temperature-dependent photoluminescence (PL) from Si nanocrystals and effects of arsenic-doping (As-doping) were investigated. The Si nanocrystals on a p-type Si substrate were prepared by low pressure chemical vapor deposition and post-deposition thermal oxidation. The As-doping process was carried out using the gas-phase-doping technique. Temperature-dependent PL from Si nanocrystals exhibited considerable differences between samples with/without As-doping. Phase transition between electron-hole liquid and free exciton was observed in the undoped Si nanocrystals, leading to the increase in PL intensity with temperature less than 50 K. Electron emission from As-doped Si nanocrystals to the p-Si substrate was responsible for the significant increase in PL intensity with temperature greater than 50 K. Characteristics of light emission from Si nanocrystals will facilitate the development of silicon-based nanoscaled light-emitting devices.  相似文献   

7.
The GaSb and Ga0.62In0.38Sb nanocrystals were embedded in the SiO2 films by radio-frequency magnetron co-sputtering and were grown on GaSb and Si substrates at different temperatures. We present results on the 10 K excitonic photoluminescence (PL) properties of nanocrystalline GaSb and Ga0.62In0.38Sb as a function of their size. The measurements show that the PL of the GaSb and Ga0.62In0.38Sb nanocrystallites follows the quantum confinement model very closely. By using deconvolution of PL spectra, origins of structures in PL were identified.  相似文献   

8.
Optical properties of Si-rich SiO2 films prepared by an RF cosputtering method are discussed. From the infrared and Raman spectroscopy together with the electron microscopy, it is shown that Si mesoscopic particles embedded in solid matrices with the sizes ranging from ˜ 10 nm (nanocrystals) to less than ˜1 nm (clusters) can be obtained by the cosputtering and post-annealing. The absorption and photoluminescence spectra are presented. For our samples, a red luminescence peak analogous to that of porous Si is observed for films containing Si clusters rather than nanocrystals. Raman spectra which evidence the success in the heavy doping of B atoms into Si nanocrystals are also discussed.  相似文献   

9.
Nanocrystalline silicon thin films codoped with erbium, oxygen and hydrogen have been deposited by co-sputtering of Er and Si. Films with different crystallinity, crystallite size and oxygen content have been obtained in order to investigate the effect of the microstructure on the photoluminescence properties. The correlation between the optical properties and microstructural parameters of the films is investigated by spectroscopic ellipsometry. PL response of the discussed structures covers both the visible wavelength range (a crystallite size-dependent photoluminescence detected for 5–6 nm sized nanocrystals embedded in a SiO matrix) and near IR range at 1.54 μm (Er-related PL dominating in the films with 1–3 nm sized Si nanocrystals embedded in a-Si:H). It is demonstrated that the different PL properties can be also discriminated on the basis of ellipsometric spectra.  相似文献   

10.
The nanostructural and chemical features of nanocrystalline Si (nc-Si) films, which were prepared by plasma-enhanced chemical vapor deposition (PECVD), were investigated in terms of various deposition conditions such as reaction gas fractions and substrate temperature. Such features were related with the photoluminescence (PL) phenomena of the nc-Si films. The phase of the nc-Si films prepared at room temperature is somewhere between amorphous and crystalline states, containing about 2 nm size nanocrystallites, which are well passivated by hydrogen. These films exhibit significant PL intensities near blue light region; the PL peaks shift to lower wavelength with decreasing nanocrystallite size.  相似文献   

11.
《Composite Interfaces》2013,20(5):441-448
Zinc oxide thin films have been deposited onto porous silicon (PSi) substrates at high growth rates by radio frequency (RF) sputtering using a ZnO target. The advantages of the porous Si template are economical and it provides a rigid structural material. Porous silicon is applied as an intermediate layer between silicon and ZnO films and it contributed a large area composed of an array of voids. The nanoporous silicon samples were adapted by photo electrochemical (PEC) etching technique on n-type silicon wafer with (111) and (100) orientation. Micro-Raman and photoluminescence (PL) spectroscopy are powerful and non-destructive optical tools to study vibrational and optical properties of ZnO nanostructures. Both the Raman and PL measurements were also operated at room temperature. Micro-Raman results showed that the A1(LO) of hexagonal ZnO/Si(111) and ZnO/Si(100) have been observed at around 522 and 530 cm–1, re- spectively. PL spectra peaks are distinctly apparent at 366 and 368 cm–1 for ZnO film grown on porous Si(111) and Si(100) substrates, respectively. The peak luminescence energy in nanocrystalline ZnO on porous silicon is blue-shifted with regard to that in bulk ZnO (381 nm). The Raman and PL spectra pointed to oxygen vacancies or Zn interstitials which are responsible for the green emission in the nanocrystalline ZnO.  相似文献   

12.
It is established that ion implantation in combination with annealing makes it possible to produce regularly arranged nanocrystalline phases and continuous films of metal silicides in the surface region of Si. It is shown that silicide nanocrystals and nanofilms crystallize in the cubic lattice. A model of a Si surface with silicide nanocrystals is developed.  相似文献   

13.
《Composite Interfaces》2013,20(7):627-632
Porous tin oxide was prepared on silicon(111) substrate by the sol–gel route. Then, the samples were dried in air at 600°C for 30 min in an electric furnace. Scanning electron microscope (SEM) images indicated the high density of the pores. Circular microvoids formed by the rigid shaped microarray network of 200–300 nm sizes are clearly seen in the plan view SEM image. The high homogeneity and uniformity of the porous region could also be visualized by this easy method. Nanocrystalline zinc oxide (ZnO) thin films have been deposited onto porous SnO2substrates at high growth rates by radio frequency (RF) sputtering using a ZnO target. The surface morphology of the nanocrystalline ZnO films was characterized by scanning electron microscope (SEM). Photoluminescence (PL) spectroscopy is a powerful, contactless and excellent nondestructive optical tool to study the acceptor binding energy of ZnO nanostructures. The PL measurements were also operated at room temperature. The peak luminescence energy in nanocrystalline ZnO on porous SnO2 is blue-shifted with regard to that in bulk ZnO (381 nm). PL spectra peaks are distinctly apparent at 375 nm for ZnO film grown on porous SnO2/Si(111) substrates.  相似文献   

14.
潘书万  陈松岩  周笔  黄巍  李成  赖虹凯  王加贤 《物理学报》2013,62(17):177802-177802
由于尺寸缩小引起的量子效应, 硒(Se) 材料的低维纳米结构具有更高的光响应和低的阈值激射等特性, 因此成为纳米电子与纳米光电子器件领域一个重要的研究方向. 本文通过对非晶硒薄膜的快速热退火来制备硒纳米颗粒, 退火温度在100–180℃之间时, 结晶后的硒纳米颗粒均为三角晶体结构, 其颗粒尺寸随退火温度的增加而线性增大. 光致发光谱测试发现三个发光峰, 分别位于1.4eV, 1.7eV和1.83eV. 研究发现位于1.4eV处的发光峰来源于非晶硒缺陷发光, 位于1.83eV处的发光峰来源于晶体硒的带带跃迁发光; 而位于1.7eV处的发光峰强度随激发功率增强而指数增大, 且向短波长移动, 该发光峰应该来源于非晶硒与硒纳米颗粒界面处的施主-受主对复合发光. 关键词: 硅基 硒纳米颗粒 光致发光 施主-受主对  相似文献   

15.
气相输运法制备ZnO薄膜(英文)   总被引:2,自引:1,他引:1       下载免费PDF全文
林秀珠  李静  吴启辉 《发光学报》2010,31(2):189-193
运用气相输运技术在不同的衬底上制备ZnO薄膜,同时对这些ZnO薄膜的表面形貌、晶体结构和光学特性进行表征。在扫描电子显微镜图像上可以看到,相比没有镀金的Si衬底,ZnO纳米颗粒在镀金的Si衬底上的生长尺寸较大。X射线衍射测试结果表明,在Si(111)和Si(100)衬底上生长的ZnO薄膜显示出不同的六角纤锌矿结构的衍射峰,但没有出现立方闪锌矿ZnO结构的衍射峰。在镀金的Si衬底上,ZnO薄膜生长取向主要为c轴方向。此外,所有ZnO样品的光致发光谱上均只出现一个狭窄且强的紫外峰,约在389 nm(3.19 eV)波长处。  相似文献   

16.
We study ultrafast photoluminescence (PL) dynamics of Si nanocrystals (NCs). The early-time PL spectra (<1 ns), which show strong dependence on NC size, are attributed to emission involving NC quantized states. The PL spectra recorded for long delays (>10 ns) are almost independent of NC size and are likely due to surface-related recombination. Based on instantaneous PL intensities measured 2 ps after excitation, we determine intrinsic radiative rate constants for NCs of different sizes. These constants sharply increase for confinement energies greater than approximately 1 eV indicating a fast, exponential growth of the oscillator strength of zero-phonon, pseudodirect transitions.  相似文献   

17.
刘发民  张立德  李国华 《中国物理》2005,14(10):2145-2148
The composite films of the nanocrystMline GaAs(1-x)Sbx-SiO2 have been successfully deposited on glass and GaSb substrates by radio frequency magnetron co-sputtering. The 10K photoluminescence (PL) properties of the nanocrystalline GaAs(1-x)Sbx indicated that the PL peaks of the GaAs(1-x)Sbx nanocrystals follow the quantum confinement model very closely. Optical transmittance spectra showed that there is a large blue shift of optical absorption edge in nanocrystMline GaAs(1-x)Sbx-SiO2 composite films, as compared with that of the corresponding bulk semiconductor, which is due to the quantum confinement effect.  相似文献   

18.
研究了作为缓冲层的ZnO薄膜在不同的退火时间、退火温度下退火对Si衬底上生长ZnSe膜质量的影响。当溅射有ZnO膜的Si(111)衬底的退火条件变化时,从X射线衍射谱(XRD)和光致发光谱(PL)中可见,ZnSe(111)膜的晶体质量有较大的变化。变温的PL谱表明,Si衬底上生长的具有ZnO缓冲层的ZnSe膜的近带边发射峰起源于自由激子发射。  相似文献   

19.
Phosphorus- and boron-doped hydrogenated amorphous silicon thin films were prepared by the plasma-enhanced chemical vapor deposition method. As-deposited samples were thermally annealed at various temperatures to get nanocrystalline Si with sizes around 10 nm. X-ray photoelectron spectroscopy measurements demonstrated the presence of boron and phosphorus in the doped films. It is found that the nanocrystallization occurs at around 600 °C for the B-doped films, while it is around 700-800 °C for the P-doped samples. For the P-doped samples, the dark conductivity decreases at first and then increases with the annealing temperature. While for the B-doped samples, the dark conductivity monotonously increases with increasing annealing temperature. As a result, the carrier transport properties of both P- and B-doped nanocrystalline Si films are dominated by the gradual activation of dopants in the films. The conductivity reaches 22.4 and 193 S cm−1 for P- and B-doped sample after 1000 °C annealing.  相似文献   

20.
The paper presents the comparison of emission efficiencies for crystalline Si quantum dots (QDs) and amorphous Si nanoclusters (QDs) embedded in hydrogenated amorphous (a-Si:H) films grown by the hot wire-CVD method (HW-CVD) at the variation of technological parameters. The correlations between the intensities of different PL bands and the volumes of Si nanocrystals (nc-Si:H) and/or an amorphous (a-Si:H) phase have been revealed using X-ray diffraction (XRD) and photoluminescence (PL) methods. These correlations permit to discuss the PL mechanisms in a-Si:H films with embedded nc-Si QDs. The QD parameters of nc-Si:H and a-Si:H QDs have been estimated from PL results and have been compared (for nc-Si QDs) with the parameters obtained by the XRD method. Using PL and XRD results the relations between quantum emission efficiencies for crystalline (ηcr) and amorphous (ηam) QDs have been estimated and discussed for all studied QD samples. It is revealed that a-Si:H films prepared by HW-CVD with the variation of wire temperatures are characterized by better passivation of nonradiative recombination centers in comparison with the films prepared at the variation of substrate temperatures or oxygen flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号