首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple, rapid and sensitive spectrophotometric procedure has been proposed for the assay of fluoroquinolones viz., ciprofloxacin (CPF) and norfloxacin (NRF), and antiallergic drugs viz., methdilazine hydrochloride (MDH) and isothipendyl hydrochloride (IPH) in bulk and pharmaceutical formulations. The method is based on the reaction of selected drugs with Brilliant Blue G (BBG) in NaOAc-AcOH buffer of pH 4.0 for CPF and NRF or in neutral medium for MDH and IPH to give chloroform soluble ion-association complexes. The effects of various parameters have been studied. The ion-association complexes exhibited absorption maxima at 610 nm for CPF, at 614 nm for NRF and MDH, and at 612 nm for IPH. Beer's law plots were obeyed in the concentration ranges of 0.5-6.0, 0.4-8.0, 0.1-6.0 and 0.2-6.1 (mg ml(-1) for CPF, NRF, MDH and IPH, respectively, with correlation coefficients not less than 0.9969. Molar absorptivity values as calculated from the Beer's law data were found to be 2.86 x 10(4), 2.64 x 10(4), 3.13 x 10(4) and 5.51 x 10(4) mol(-1) cm(-1) for CPF, NRF, MDH and IPH, respectively. The influence of commonly employed excipients in the determination of the studied drugs has been studied. The results obtained by the proposed method were statistically validated.  相似文献   

2.
A simple and sensitive indirect spectrofluorimetric method for the assay of piroxicam (PX) and propranolol hydrochloride (PPH) in the pure form and in pharmaceutical formulations is proposed. This method is based on the oxidation of PX and PPH by a known excess of N-bromosuccinimide (NBS) followed by the reaction of the excess NBS with methdilazine hydrochloride (MDH) to yield fluorescent species. The fluorescence intensities were measured at 377 nm after excitation at 343 nm. The fluorescence intensities decrease linearly with an increase in concentration of PX and PPH over the ranges of 0.2–8.0 and 0.4–18.0 g/mL respectively. The common excipients and additives did not interfere in the determination. The proposed method has been successfully applied for the determination of PX and PPH in pharmaceutical formulations. The results have been validated by statistical data.  相似文献   

3.
A simple and sensitive indirect spectrophotometric method for the assay of meloxicam (MX), tenoxicam (TX) and piroxicam (PX) in pure and in pharmaceutical formulations by flow injection analysis (FIA) has been proposed. The method is based on the oxidation of these drugs by a known excess of N-bromosuccinimide (NBS) in an acidic medium, followed by a reaction of excess oxidant with chloranilic acid (CAA) to bleach its purple color. The absorbance values increased linearly with increasing concentrations of the drugs. Variables, such as the acidity, reagent concentrations, flow rate of reagents and other FI parameters were optimized to produce the most sensitive and reproducible results. The system obeyed Beer's low over concentration ranges of 10 - 160, 20 - 200 and 10 - 160 microg/ml for MX, TX and PX, respectively. The common excipients and additives did not interfere with their determinations. The method was successfully applied to the determinations of MX, TX and PX in various pharmaceutical preparations. The results obtained by the proposed method were found to be in good agreement with those found by the official HPLC methods.  相似文献   

4.
Three simple, accurate and sensitive spectrophotometric methods are developed for the determination of some new drugs for the treatment of osteoporosis: risedronate sodium (I), alendronate sodium (II) and etidronate disodium (III). The first method is based on the measurement of difference in absorbance (Delta A) of risedronate sodium in 0.01 mol l(-1) hydrochloric and 0.1 mol l(-1) sodium hydroxide at 262 nm. Beer's law is obeyed over a concentration range of 15-150 microg ml(-1) with mean recovery 99.75+/-1.22 and molar absorptivity (epsilon) 1.891 x 10(3). The second method is based on the reaction of the primary amino group of (II) with ninhydrin reagent in methanolic medium in the presence of 0.05 mol l(-1) sodium bicarbonate. The colored product is measured at 568 nm, and the linearity range is found to be 3.75-45 microg ml(-1) with mean recovery 99.77+/-0.73 and epsilon 9.425 x 10(3). The third method is based on oxidation of the three mentioned drugs with ceric (IV) sulphate in 0.5 mol l(-1) sulphuric acid at room temperature and subsequent measurement of the excess unreacted cerium (IV) sulphate at 320 nm. The method obeyed Beer's law over a concentration range of 2-24 microg ml(-1) for the three drugs with mean recovery 99.79+/-1.16, 99.73+/-1.38 and 99.86+/-1.13 and epsilon 14.427 x 10(3), 13.813 x 10(3) and 14.000 x 10(3) for drugs I, II, III respectively. The proposed methods were successfully applied for the determination of the studied drugs in bulk powder and in pharmaceutical formulations. The results were found to agree statistically with those obtained the reported methods. Furthermore, the methods were validated according to USP regulations and also assessed by applying the standard addition technique.  相似文献   

5.
A simple, sensitive and rapid spectrophotometric method was developed for the determination of thallium(III) using trifluoperazine hydrochloride (TFPH). The method is based on the oxidation of TFPH by thallium(III) in a phosphoric acid medium to form a red-colored radical cation with an absorption maximum at 505 nm. Beer's law is valid over the concentration range of 0.5 - 6.5 microg ml(-1) of thallium(III). The molar absorptivity and Sandell's sensitivity of the color system are 2.14 x 10(4) l mol(-1) cm(-1) and 0.0095 microg cm(-2), respectively. The optimum reaction conditions and other analytical parameters were evaluated. The tolerance limit of the method towards various ions usually associated with thallium has been studied. The proposed method has been successfully applied to the analysis of thallium in alloys, minerals, standard reference material, water, and urine samples.  相似文献   

6.
A rapid, relatively sensitive, and low-cost method for the determination of water-soluble urea content in dermatological therapy products and cosmetics is proposed using a new spectrophotometric assay with water as the only extraction solvent. Spectrophotometric methods involve addition of a known excess of bromate to urea in an acid medium, followed by the determination of residual bromine and chlorine reacting with methyl orange and measurement of absorbance at 505 nm. The absorbance increases linearly with urea concentration (r = 0.9998). The systems obey Beer's law for 6 - 90 microg ml(-1). The calculated apparent molar absorbance values are found to be 4.537 x 10(3) dm(3) mol(-1) cm(-1) and the Sandell's sensitivity is 0.013 microg cm(-2). The variables affecting the rate of the reaction were investigated. The relative standard deviation for five-replication determination of 60 microg ml(-1) urea was 2.1% and the detection limit of the method is 0.34 ng ml(-1).  相似文献   

7.
A novel reaction of cyanide with 2,2-dihydroxy-1,3-indanedione in the presence of sodium carbonate is described. It is highly selective and sensitive, and suitable for the determination of hydrogen cyanide in the environment and free cyanide ions in water, blood, urine, serum, etc. As little as 1.25x10(-7) mol x L(-1) CN(-) (3.25x10(-9) g x mL(-1) cyanide) can be determined by use of this reaction. The color system obeys Beer's law in the range 10 ng x mL(-1) to 1.0 microg x mL(-1) at 510 nm. The molar absorptivity was 8.0x10(4) L x mol(-1) x cm(-1) for a solution of concentration 0.2 microg x mL(-1). All other important analytical properties of the reaction have been studied. It is proposed that the purple color produced under these reaction conditions is that of 2-cyano-1,2,3-trihydroxy-2 H indene.  相似文献   

8.
Three different sensitive and accurate spectroscopic procedures were developed for the determination of three angiotensin-converting enzyme inhibitors, namely, ramipril, enalapril maleate and fosinopril. The first two spectrophotometric (extractive and non-extractive) procedures were based on ternary complex formation with molybdenum(V) thiocyanate. The formed complex can be determined by extraction with chloroform measured at lambdamax 517 nm Beer's law was obeyed in the concentration range from (10--90 microg ml(-1)) for ramipril and fosinopril and (4--36 microg ml(-1)) for enalapril maleate with molar absorptivity 1.2x10(4), 2x10(4) and 3.4x10(4) l mol(-1) cm(-1), respectively, or by direct measurement after addition of benzalkonium chloride as surfactant and measuring the formed ternary complex at lambdamax 545 nm with a linear relationship in the concentration range from (8-7-2 microg ml(-1)), (3--27 microg ml(-1)) and (8--72 microg ml(-1)) for ramipril, enalapril maleate and fosinopril with molar absorptivity 1.5x10(4), 5x10(4) and 2.1x10(4) l mol(-1) cm(-1), respectively. The third procedure is atomic absorption measurement through the quantitative determination of molybdenum content of the complex. These methods hold their accuracy and precision well when applied to the determination of ramipril, enalapril maleate and fosinopril in their dosage forms.  相似文献   

9.
A simple, selective, sensitive, and rapid spectrophotometric method has been developed for the determination of thallium(III) using 3-methyl-2-benzothiazolinone hydrazone hydrochloride and N-(1-naphthyl)-ethylenediamine dihydrochloride. The obtained product had an absorption maximum of 590 nm. Beer's law was valid over the concentration range of 0.15-8 microg/mL. The molar absorptivity and Sandell's sensitivity of the colored system were 2.93 x 10(4) L/mol x cm and 0.00723 microg/mL, respectively. The effect of different acids on the sensitivity of the method, interference by foreign substances, the optimum reaction conditions, and other analytical parameters were evaluated. The proposed method has been successfully applied in the analysis of T1(III) in standard reference materials, synthetic mixtures, and water and urine samples. The performance of the proposed method was evaluated in terms of Student's t-test and variance ratio F-test, which indicated the significance of the proposed method over reported methods.  相似文献   

10.
Gowda HS  Ramappa PG 《Talanta》1976,23(7):552
Diethazine hydrochloride reacts with ruthenium(III) instantaneously at high acidity (sulphuric or hydrochloric acid) to form a red 1:1 complex with absorbance maximum at 515nm. A tenfold molar excess of reagent is necessary for complete complexation. Beer's law is obeyed for 1.0-10.4 ppm of ruthenium(III), with optimum concentration range 2-9 ppm. The molar absorptivity is 5.35 x 10(3) 1.mol(-1) .cm(-1).  相似文献   

11.
A sensitive spectrophotometric method for the determination of hydroxylamine is described. The method is based on the oxidation of hydroxylamine to nitrite using sodium arsenate under alkaline condition. The formed nitrite is determined based on the diazo coupling reaction between p-nitroaniline and N-(1-naphthyl)ethylenediamine dihydrochloride [NEDA]. The system obeys Beer's law over the concentration range 0-7 microg of hydroxylamine at 545 nm and the colour is stable for 3 h. The molar absorptivity of the colour system is found to be 6.7 x 10(4) l mol(-1) cm(-1). The relative standard deviation is 1.2% for ten determinations at 4 microg of hydroxylamine. Interferences due to various foreign ions have been studied and the method has been applied to the determination of hydroxylamine and its derivatives used in pharmaceutical formulations after hydrolysis.  相似文献   

12.
A simple and sensitive spectrophotometric method was developed for the determination of trace amounts of sulfur dioxide. The method is based on the reaction of SO2 with a known excess of ICI as the oxidant. The unreacted ICI iodinates thymol blue under acidic conditions. The lambdamax of thymol blue is at 545 nm under acidic conditions, and on lodination lambdamax shifts to 430 nm. This shift results in a decrease in the absorbance at 545 nm. The amount of uniodinated thymol blue present depends on the concentration of unreacted ICI, which in turn depends on the SO2 concentration. The system obeys Beer's law in the range 0-30 microg SO2 in a final volume of 25 mL, having a molar absorptivity of 3.2 x 10(4) L/mol cm with a relative standard deviation (RSD) of 2% at 24 microg SO2 (n = 10). The uniodinated dye can be extracted into 5 mL isoamyl alcohol under acidic conditions for measurement of absorbance. The extraction method obeys Beer's law in the range 0-5 microg SO2, having a molar absorpitivity of 4.16 x 10(4) L/mol x cm with an RSD of 1.9% at 4 microg SO2 (n = 10). The method has been successfully applied to the determination of atmospheric SO2.  相似文献   

13.
The main aim of this work is to develop and validate two spectrophotometric methods for the quantitative analysis of rabeprazole sodium in commercial dosage forms. Method A is based on the reaction of drug with 3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH) in the presence of ammonium cerium(IV) nitrate in acetic acid medium at room temperature to form red-brown product which absorbs maximally at 470 nm. Method B utilizes the reaction of rabeprazole sodium with 1-chloro-2,4-dinitrobenzene (CDNB) in dimethyl sulfoxide (DMSO) at 45+/-1 degrees C to form yellow colored Meisenheimer complex. The colored complex has a characteristic band peaking at 420 nm. Under the optimized reaction conditions, proposed methods are validated as per ICH guidelines. Beer's law is obeyed in the concentration ranges of 14-140 and 7.5-165 microg ml(-1) with linear regression equations of A=6.041 x 10(-4)+1.07 x 10(-2)C and A=1.020 x 10(-3)+5.0 x 10(-3)C for methods A and B, respectively. The limits of detection for methods A and B are 1.38 and 0.75 microg ml(-1), respectively. Both methods have been applied successfully for the estimation of rabeprazole sodium in commercial dosage forms. The results are compared with the reference UV spectrophotometric method.  相似文献   

14.
New, simple, cost effective, accurate and reproducible UV-spectrophotometric methods were developed and validated for the estimation of moxifloxacin in bulk and pharmaceutical formulations. Moxifloxacin was estimated at 296 nm in 0.1N hydrochloric acid (pH 1.2) and at 289 nm in phosphate buffer (pH 7.4). Beer's law was obeyed in the concentration range of 1-12 microg ml(-1) (r2=0.9999) in hydrochloric acid and 1-14 microg ml(-1) (r2=0.9998) in the phosphate buffer medium. The apparent molar absorptivity and Sandell's sensitivity coefficient were found to be 4.63 x 10(4) l mol(-1) cm(-1) and 9.5 ng cm(-2)/0.001 A in hydrochloric acid; and 4.08 x 10(4) l mol(-1) cm(-1) and 10.8 ng cm(-2)/0.001 A in phosphate buffer media, respectively indicating the high sensitivity of the proposed methods. These methods were tested and validated for various parameters according to ICH guidelines. The detection and quantitation limits were found to be 0.0402, 0.1217 microg ml(-1) in hydrochloric acid and 0.0384, 0.1163 microg ml(-1) in phosphate buffer medium, respectively. The proposed methods were successfully applied for the determination of moxifloxacin in pharmaceutical formulations (tablets, i.v. infusions, eye drops and polymeric nanoparticles). The results demonstrated that the procedure is accurate, precise and reproducible (relative standard deviation <2%), while being simple, cheap and less time consuming and hence can be suitably applied for the estimation of moxifloxacin in different dosage forms and dissolution studies.  相似文献   

15.
A simple spectrophotometric method, based on the complexes with xylenol orange (XO) and EDTA, is presented for the rapid determination of aluminium and nickel, respectively, in synthetic samples of hydrotalcite. The method only requires the solubilization in sulphuric acid of the inorganic material before the ligand addition. Under optimum conditions, the complexes Al-XO and Ni-EDTA showed maximum absorption at 554 nm and 380 nm, respectively. The method obeyed Beer's law in the concentration range 0.14-1.8 microg mL(-1) of aluminium, and 30-2730 microg mL(-1) of nickel. Molar absorptivities were 2.45 x 10(4) and 14.85 L mol(-1) cm(-1) while Sandell's sensitivities were 1.1 x 10(-3) and 3.9 microg cm(-2) for aluminium and nickel, respectively. The standard addition technique was used and the recoveries obtained revealed that the proposed procedure shows good accuracy.  相似文献   

16.
A novel and rapid spectrophotometric method for the determination of paracetamol is proposed in this paper. The proposed method is based on the microwave assisted alkaline hydrolysis of paracetamol to p-aminophenol that reacts with S2- in the presence of Fe3+ as oxidant to produce a methylene blue-like dye having an absorptivity maximum at 540 nm. The experiment showed that paracetamol could be hydrolysed quantitatively to p-aminophenol in only 1.5 min under radiation power 640 W using a microwave in NaOH medium. The system obeys Beer's law in the range of 0-3.0 x 10(-4) mol l(-1) paracetamol. The molar absorptivity and Sandell's sensitivity were found to be 3.2 x 10(-3) l mol(-1) cm(-1) and 0.047 microg cm(-2), respectively. The relative standard deviation (n=11) was 1.7% for 8.0 x 10(-5) mol l(-1) paracetamol. The method has been applied successfully to analysis of paracetamol in pharmaceutical preparation.  相似文献   

17.
The bidentate ligand diformylhydrazine (OHC-HN-NH-CHO), DFH, combines with iron(II) and iron(III) in alkaline media in the pH range 7.3-9.3 to form an intensely colored red-purple iron(III) complex with an absorption maximum at 470 nm. Beer's law is obeyed for iron concentrations from 0.25 to 13 microg mL(-1). The molar absorptivity was in the range 0.3258x10(4)-0.3351x10(4) L mol(-1) cm(-1) and Sandell's sensitivity was found to be 0.0168 microg cm(-2). The method has been applied to the determination of iron in industrial waste, ground water, and pharmaceutical samples.  相似文献   

18.
Zhao SL  Xia XQ  Ma HR  Xi HJ 《Talanta》1994,41(8):1353-1356
A spectrophotometric method for the determination of trace amounts of nickel is described. At pH 6, nickel reacts with p-acetylarsenazo to form a 1:2 coloured complex with an absorption maximum at 630 nm. The apparent molar absorptivity is 6.5 x 10(4) l.mol(-1) . cm(-1) . Beer's law is obeyed over the concentration range of 0-0.8 microg/ml. The proposed method is selective, sensitive and can be applied to the determination of nickel in aluminum alloy.  相似文献   

19.
Simple and sensitive spectrophotometric and spectrofluorimetric methods are described for analysis of acebutolol hydrochloride. The proposed methods are based on oxidation of the selected drug with cerium(IV) ion in acidic medium with subsequent measurement of either the decrease in absorbance at 320 nm or the fluorescence intensity of the produced cerous(III) ion at 363 nm (excitation at 250 nm). Beer's law obeyed from 1.0-7.0 microg ml(-1) and 0.25-2.5 microg ml(-1) acebutolol hydrochloride, using the spectrophotometric and spectrofluorimetric method, respectively. The proposed methods were successfully applied for determination of the selected drug in its pharmaceutical preparation with good recoveries.  相似文献   

20.
Simple, accurate, reproducible, selective, sensitive and cost effective UV-spectrophotometric methods were developed and validated for the estimation of trigonelline in bulk and pharmaceutical formulations. Trigonelline was estimated at 265 nm in deionised water and at 264 nm in phosphate buffer (pH 4.5). Beer's law was obeyed in the concentration ranges of 1-20microg mL(-1) (r2=0.9999) in deionised water and 1-24 microg mL(-1) (r2=0.9999) in the phosphate buffer medium. The apparent molar absorptivity and Sandell's sensitivity coefficient were found to be 4.04 x 10(3)L mol(-1)cm(-1) and 0.0422 microg cm(-2)/0.001A in deionised water; and 3.05 x 10(3)L mol(-1)cm(-1) and 0.0567 microg cm(-2)/0.001A in phosphate buffer media, respectively. These methods were tested and validated for various parameters according to ICH guidelines. The detection and quantitation limits were found to be 0.12 and 0.37 microg mL(-1) in deionised water and 0.13 and 0.40 microg mL(-1) in phosphate buffer medium, respectively. The proposed methods were successfully applied for the determination of trigonelline in pharmaceutical formulations (vaginal tablets and bioadhesive vaginal gels). The results demonstrated that the procedure is accurate, precise, specific and reproducible (percent relative standard deviation <2%), while being simple and less time consuming and hence can be suitably applied for the estimation of trigonelline in different dosage forms and dissolution studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号