首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previously we obtained self-broadened halfwidth and self-induced shift coefficients at room temperature for 15 near infrared CO2 bands between 4750 and 7000 cm−1 [R.A. Toth, L.R. Brown, C.E. Miller, V.M. Devi, D.C. Benner, J. Mol. Spectrosc., 239 (2006) 243-271]. The present study expands our work on the near infrared line parameters of CO2 to include air broadening coefficients. Here we report nearly 400 air-broadened half width and air-induced pressure shift coefficients spanning 11 different CO2 vibrational bands in the 4750-7000 cm−1 region. Retrievals have been performed using Voigt line profiles over three distinct spectral intervals: (a) 4750-5200 cm−1, covering the 20011 ← 00001, 20012 ← 00001, and 20013 ← 00001 Fermi Triad and three associated hot bands 21111 ← 01101, 21112 ← 01101, 21113 ← 01101; (b) 6100-7000 cm−1, covering the 30011 ← 00001, 30012 ← 00001, 30013 ← 00001 and 30014 ← 00001 Fermi Tetrad; (c) near 6950 cm−1 for the 00031 ← 00001 overtone band. The air-broadened halfwidth and air-induced pressure shift coefficients have been modeled with empirical expressions and compared to other measurements available in the literature.  相似文献   

2.
Room temperature values for self-broadened and hydrogen-broadened Lorentz halfwidth coefficients, and self and hydrogen pressure-induced shift coefficients have been measured for transitions with rotational quantum number m ranging between −24 and 24 in the 2 ← 0 band of 12C16O. The spectra were recorded with the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak. The analysis was performed using a multispectrum nonlinear least squares technique. We have compared our results with similar measurements published recently.  相似文献   

3.
The McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory (NSO) on Kitt Peak, Arizona, was used to record infrared high resolution absorption spectra of CO2 spectra broadened by O2. These spectra were analyzed to measure O2-broadened half-width coefficients, O2-induced pressure-shift coefficients and speed dependent parameters for transitions in the 30013←00001 and 30012←00001 bands of 16O12C16O located near 6227 and 6348 cm−1, respectively. All spectra were obtained at room temperature using the long path, 6 m base path White cell available at NSO. A multispectrum nonlinear least-squares fitting algorithm employing Voigt line shapes modified to include line mixing and speed dependence was used to fit simultaneously a total of 19 spectra in the 6120-6280 cm−1 (30013←00001) and 6280-6395 cm−1 (30012←00001) spectral regions. 16 of the 19 spectra analyzed in this work were self broadened and three spectra were lean mixtures of CO2 in O2. The volume mixing ratios of CO2 in the three spectra varied between 0.06 and 0.1. Lorentz half-width and pressure-induced shift coefficients were measured for all transitions in the P(50)-R(50) range in both vibrational bands. The results obtained from present analysis have been compared with measurements available in the literature for self-, air-, oxygen- and argon-broadening. No significant differences were observed between the broadening and shift coefficients of the two bands. The N2-broadened half-width and pressure-shift coefficients were computed from measured air- and O2-broadened width and shift coefficients.  相似文献   

4.
The N2- and O2-broadening effect have been investigated for 10 absorption lines of the CO2 (3001)III ← (0000) band centered at 6231 cm−1, in the range from P(28) to R(28) by a near-infrared diode-laser spectrometer. We have analyzed the observed line profiles with the Galatry function, and determined the N2- and O2-broadening coefficients precisely. The air-broadening coefficients for these lines have been derived. The present results are compared with those of the previous studies for this band and with some of the other bands.  相似文献   

5.
Line position, intensity and line shape parameters (Lorentz widths, pressure shifts, line mixing, speed dependence) are reported for transitions of the 30013 ← 00001 band of 16O12C16O (ν0 = 6227.9 cm−1). The results are determined from 26 high-resolution, high signal-to-noise ratio spectra recorded at room temperature with the McMath-Pierce Fourier transform spectrometer. To minimize the systematic errors of the retrieved parameters, we constrained the multispectrum nonlinear least squares retrieval technique to use quantum mechanical expressions for the rovibrational energies and intensities rather than retrieving the individual positions and intensities line by line. Self- and air-broadened Lorentz width and pressure-induced shift, speed dependence and line mixing (off-diagonal relaxation matrix elements) coefficients were adjusted individually. Errors were further reduced by simultaneously fitting the interfering absorptions from the weak 30012 ← 00001 band of 16O13C16O as well as the weak hot bands 31113 ← 01101, 32213 ← 02201, 40014 ← 10002 and 40013 ← 10001 of 16O12C16O in this spectral window. This study complements our previous work on line mixing and speed dependence in the 30012 ← 00001 band (ν0 = 6347.8 cm−1) [V.M. Devi, D.C. Benner, L.R. Brown, C.E. Miller, R.A. Toth, J. Mol. Spectrosc. 242 (2007) 90-117] and provides key data needed to improve atmospheric remote sensing of CO2.  相似文献   

6.
The room temperature absorption spectrum of formaldehyde, H2CO, from 6547 to 6804 cm−1 (1527-1470 nm) is reported with a spectral resolution of 0.001 cm−1. The spectrum was measured using cavity-enhanced absorption spectroscopy (CEAS) and absorption cross-sections were calculated after calibrating the system using known absorption lines of H2O and CO2. Several vibrational combination bands occur in this region and give rise to a congested spectrum with over 8000 lines observed. Pressure broadening coefficients in N2, O2, and H2CO are reported for an absorption line at 6780.871 cm−1, and in N2 for an absorption line at 6684.053 cm−1.  相似文献   

7.
Theoretical and experimental values have been determined for the pressure broadening of the ν1 + ν3 band of acetylene by hydrogen and deuterium at 195 K, and experimental values of the pressure shifts have been determined. Theoretical values have been calculated on the basis of a recent potential energy surface using the close coupling scheme. We discuss the detailed contribution of the various rotational angular momenta of the perturbing gas and the ortho and para contribution to the total pressure broadening cross-sections. We give routes to circumvent the computational cost of such calculations. Experimental values have been measured using a tunable diode laser spectrometer assuming a Voigt line shape. These pressure broadening parameters are compared with measurements performed recently at room temperature and with present measurements performed at 195 K in the ν1 + ν3 band of acetylene. A satisfactory agreement is obtained with the present results and available ones at 295 K.  相似文献   

8.
High-resolution absorption lineshapes of two H2O transitions near 7185.60 and 7154.35 cm−1 have been recorded in a heated static cell as a function of temperature (296-1100 K) and pressure (6-830 Torr) using two distributed-feedback diode lasers. The measured absorption spectra are least squares fit to both Voigt and Galatry profiles. Strong collisional-narrowing effects are observed in the Ar-broadened H2O spectra at near-atmospheric pressure due to the relatively weak collisional broadening induced by Ar-H2O collisions, while collisional narrowing is not significant for pure H2O absorption lineshapes. Line strengths and self-broadening coefficients are inferred from the pure H2O absorption spectra and compared with published data. Temperature dependences of the Ar-induced broadening, narrowing, and shift coefficients are determined using Galatry fits to the absorption data. The measured collisional-narrowing parameters have similar temperature dependence to the collisional-broadening coefficients.  相似文献   

9.
Intensity and line shape parameters which predict spectral lines with absolute accuracies better than 0.3% have been determined for transitions of the 30012 ← 00001 band of 16O12C16O centered near 6348 cm−1 from 26 high resolution, high signal-to-noise ratio spectra recorded at room temperature with the McMath-Pierce Fourier transform spectrometer. To maximize the accuracies of the retrieved parameters, the multispectrum non-linear least squares retrieval technique was modified to adjust the rovibrational constants (G, B, D, etc.) and intensity parameters, including Herman-Wallis terms, rather than retrieving the individual positions and intensities. Speed-dependent Voigt line shapes with line mixing were required to remove systematic errors in the fit residuals. Self- and air-broadening (widths and pressure-induced shifts, speed dependence parameters) and line mixing (off-diagonal relaxation matrix elements) coefficients were thus obtained in the multispectrum fit. Remaining errors were minimized by fitting the weak 30011 ← 00001 band of 16O13C16O as well as the weak hot bands 31112 ← 01101, 32212 ← 02201, 40012 ← 10001, and 40013 ← 10002 of 16O12C16O that contribute interfering absorptions in this spectral window. This study presents the most extensive set of measurements to date for self- and air-broadening and self- and air-shift coefficients of a near infrared band of CO2. This is also the first study where line mixing parameters have been experimentally determined for any parallel CO2 band.  相似文献   

10.
The 0310 ← 0110 parallel Q branch of N2O has been studied at 297 K and over the pressure range 1-130 torr. Absorption spectra were recorded using a high resolution (1.5 MHz or 5 × 10−5 cm−1) and high signal-to-noise (>3500:1) mid-infrared spectrometer based on difference-frequency infrared generation in AgGaS2. In the low-pressure range (1-11 torr) we obtained accurate values for the line strengths, the broadening coefficients, the weak mixing coefficients, and the overall shifting of the branch. The medium pressure results, ranging from 23 to 130 torr, were analyzed by treating the band as a whole, using a relaxation matrix formalism, based on an energy gap scaling law. We find, effectively, that only 36% of the rotationally inelastic collisions are associated with Q branch mixing, the rest presumably being associated with Q-P and Q-R mixing in the same vibrational band. The pressure shifting coefficient of the 0310 ← 0110 Q branch as a whole was also determined and found to be 5.8 × 10−3 cm−1/atm towards lower frequencies.  相似文献   

11.
The absorption spectra of H12C13CD and H13C12CD have been observed at high resolution between 6480 and 6610 cm−1 using an external cavity diode laser. The strong 2ν1 band has been observed for each species using a sample enriched in deuterium at natural abundance of 13C. Rotational analyses reveal bands of both species to be essentially unperturbed. Centers of unblended lines are determined with an accuracy of approximately 10 MHz.  相似文献   

12.
We report on experimental collisional relaxation of the J = 24 ← 23 line of HC314N, located near 218.3 GHz, induced by nitrogen, hydrogen, and helium. The measurements were carried out at selected temperatures in the 235-350 K range using a video-type spectrometer. The foreign gas broadening parameters and their temperature dependences were determined assuming Voigt lineshape profiles and the usual T−n temperature law. The experimental broadening parameters are compared with results derived using the ATC collisional formalism.  相似文献   

13.
The air induced broadening coefficients of the pure rotational transitions of H2O at 556.936 GHz (110←101), and 752.033 GHz (211←202) were measured by terahertz time-domain spectroscopy. The air broadening coefficient was determined to be for the 556.936 GHz line and for the 752.033 GHz line, respectively. The present broadening coefficients for the 556.936 GHz water line are significantly smaller than those of Markov and Krupnov [Measurements of the pressure shift of the 1(10)-1(01) water line at 556.936 GHz produced by mixtures of gases. J Mol Spect 1995:172;211-4] but relatively close to the values of the HITRAN database. The measured data may improve the accuracy of the abundance of water vapor retrieved from spectra obtained by the Odin/SMR satellite instrument. The effect on the satellite retrieval processing is discussed.  相似文献   

14.
In the previous paper, we report line strength measurements for 58 bands of 12CO2 between 4550 and 7000 cm−1 [R.A. Toth, L.R. Brown, C.E. Miller, V. Malathy Devi, D. Chris Benner, J. Mol. Spectrosc., this issue, doi:10.1016/j.jms.2006.008.001.]. In the present study, self-broadenedwidth and self-induced pressure shift coefficients are determined in two intervals:
(a) between 4750 and 5400 cm−1for bands of the Fermi triad (20011 ← 00001, 20012 ← 00001, 20013 ← 00001), three corresponding hot bands (21111 ← 01101, 21112 ← 01101, 21113 ← 01101) and the 01121← 00001 combination band;
(b) between 6100 and 7000 cm−1 for the Fermi tetrad (30014 ← 00001, 30013 ← 00001, 30012 ← 00001, 30011 ← 00001), two associated hot bands (31113 ← 01101, 31112 ← 01101), as well as 00031 ← 00001 and its hot band 01131 ← 01101.
Least-squares fits of the experimental width and pressure shift coefficients are modeled using empirical expressions:
  相似文献   

15.
The high resolution absorption spectrum of methane has been recorded at liquid nitrogen temperature by direct absorption spectroscopy between 1.62 and 1.71 μm (5852-6181 cm−1) using a newly developed cryogenic cell and a series of distributed feedback (DFB) laser diodes. The minimum value of the measured line intensities is on the order of 3 × 10−26 cm/molecule The investigated spectral range corresponds to the high energy part of the tetradecad dominated by the 2ν3 band for which a theoretical treatment is not yet available. The positions and strengths at 81 K of 2187 transitions were obtained from the spectrum analysis. From the values of the line strength at liquid nitrogen and room temperatures, the low energy values of 845 transitions could be determined. The obtained results are discussed in relation with the previous work of Margolis and compared to the line list provided by the HITRAN database.  相似文献   

16.
The absorption profile of the N = 1− fine structure line of oxygen was recorded by a resonator spectrometer at a frequency range of 110-130 GHz at atmospheric pressure and different temperatures ranging from −21 °C up to +22 °C. Analysis of the observed line shape allowed determination of the temperature dependence of the line pressure broadening. The measured value of the temperature exponent is n = 0.74(5) for self-broadening. Consistency of the measurements is supported by simultaneous measurements of the line intensity, the line mixing parameter and the line center frequency, and by comparison of obtained values with previously known data.  相似文献   

17.
A high resolution (0.0018 cm−1) Fourier transform instrument has been used to record the spectrum of an enriched 34S (95.3%) sample of sulfur dioxide. A thorough analysis of the ν2, 2ν2 − ν2, ν1, ν1 + ν2 − ν2, ν3, ν2 + ν3 − ν2, ν1 + ν2 and ν2 + ν3 bands has been carried out leading to a large set of assigned lines. From these lines ground state combination differences were obtained and fit together with the existing microwave, millimeter, and terahertz rotational lines. An improved set of ground state rotational constants were obtained. Next, the upper state rotational levels were fit. For the (0 1 0), (1 1 0) and (0 1 1) states, a simple Watson-type Hamiltonian sufficed. However, it was necessary to include explicitly interacting terms in the Hamiltonian matrix in order to fit the rotational levels of the (0 2 0), (1 0 0) and (1 0 1) states to within their experimental accuracy. More explicitly, it was necessary to use a ΔK = 2 term to model the Fermi interaction between the (0 2 0) and (1 0 0) levels and a ΔK = 3 term to model the Coriolis interaction between the (1 0 0) and (0 0 1) levels. Precise Hamiltonian constants were derived for the (0 0 0), (0 1 0), (1 0 0), (0 0 1), (0 2 0), (1 1 0) and (0 1 1) vibrational states.  相似文献   

18.
This paper presents results from an intercomparison of self-broadening coefficients and intensities of approximately 440 of the strongest water vapour lines in the spectral region 5000-5600 cm−1. Line parameters retrieved and reported recently by two scientific groups, both using Fourier transform spectroscopy, are compared with parameters taken from the HITRAN-2008 database and with theoretical linelist BT2. This comparison has revealed marked systematic differences in the self-broadening coefficients (up to 20%) and to lesser degree in the line intensities (up to 6%) between different sources.  相似文献   

19.
A new spectroscopic database for carbon dioxide in the near infrared is presented to support remote sensing of the terrestrial planets (Mars, Venus and the Earth). The compilation contains over 28,500 transitions of 210 bands from 4300 to 7000 cm−1 and involves nine isotopologues: 16O12C16O (626), 16O13C16O (636), 16O12C18O (628), 16O12C17O (627), 16O13C18O (638), 16O13C17O (637), 18O12C18O (828), 17O12C18O (728) and 18O13C18O (838). Calculated line positions, line intensities, Lorentz half-width and pressure-induced shift coefficients for self- and air-broadening are taken from our recent measurements and are presented for the Voigt molecular line shape. The database includes line intensities for 108 bands measured using the McMath-Pierce Fourier transform spectrometer located on Kitt Peak, Arizona. The available broadening parameters (half-widths and pressure-induced shifts) of 16O12C16O are applied to all isotopologues. Broadening coefficients are computed using empirical expressions that have been fitted to the experimental data. There are limited data for the temperature dependence of widths and so no improvement has been made for those parameters. The line intensities included in the catalog vary from 4×10−30 to 1.29×10−21 cm−1/(molecule cm−2) at 296 K. The total integrated intensity for this spectral interval is 5.9559×10−20 cm−1/(molecule cm−2) at 296 K.  相似文献   

20.
We present new measurements of the line strengths in the third vibrational overtone band in pure HI and its mixtures with Ne, Ar, and Xe, and report results of the Herman-Wallis analysis for this band. Significance of the higher-order terms in the polynomial representation of the dipole moment function is discussed. It is concluded that the spectroscopic data yield the dipole moment function fully described by a cubic polynomial in powers of the reduced displacement from the equilibrium bond length. In the Padé approximant for the dipole moment function, the vicinity of the saddle point near equilibrium also can be accurately fitted with a cubic polynomial. Pressure line broadening and shifting parameters are reported for mixtures of HI with rare gases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号