首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We applied the resonant two-photon ionization and mass-analyzed threshold ionization spectroscopic techniques to record the vibronic and cation spectra of m-chloroaniline. The band origin of the first electronic transition was found to be 33 658 ± 2 cm−1, whereas the adiabatic ionization energy was determined to be 63 958 ± 5 cm−1. Within our experimental detection limit, these measured values are the same for both of the 35Cl and 37Cl isotopomers. The observed active modes of this molecule in the electronically excited S1 and cationic ground D0 states mainly involve the in-plane ring deformation and substituent-sensitive bending vibrations.  相似文献   

2.
The geometric structures and vibrations of p-chloroanisole isotopomers in the first electronically excited state were studied by mass-analyzed resonance-enhanced two-photon ionization spectroscopy and by theoretical calculations. The band origins of the S1 ← S0 electronic transitions of 35Cl and 37Cl isotopomers were found to be equivalent at 34 859 ± 3 cm−1. Assignments of the observed vibrational bands of the two isotopomers were made mainly based on the CIS/cc-PVDZ calculations and on conformity with the available data in the literature. Although the general spectral features of these two isotopomers are similar, the frequencies of some vibrational modes are different. This frequency shift partially depends on the degree of involvement of the chlorine atom in the molecular vibrations.  相似文献   

3.
We applied the two-color resonant two-photon mass-analyzed threshold ionization technique to record the vibrationally resolved cation spectra of 3,4-difluoroaniline (34DFA) via the 00, X1, 6b1, and I2 levels of the S1 state. The adiabatic ionization energy of this molecule was determined to be 64 195 ± 5 cm−1. Most of the observed active modes of the 34DFA cation in the D0 state are related to the in-plane ring deformation vibrations. Comparing these data with those of 3-fluoroaniline and 4-fluoroaniline, one can learn the effects of fluorine substitution on the electronic transition and molecular vibration.  相似文献   

4.
High-resolution Fourier transform spectrum of phosphine (PH3) at room temperature has been recorded in the region of the 3ν2 band (2730-3100 cm−1) at an apodized resolution of 0.005 cm−1. About 200 vibration-rotation transitions have been least squares fitted with an rms of 0.00039 cm−1 after taking into account the ΔK = ±3 interaction.  相似文献   

5.
A study on interface states density distribution and characteristic parameters of the In/SiO2/p-Si (MIS) capacitor has been made. The thickness of the SiO2 film obtained from the measurement of the corrected capacitance in the strong accumulation region for MIS Schottky diodes was 220 Å. The diode parameters from the forward bias I-V characteristics such as ideality factor, series resistance and barrier heights were found to be 1.75, 106-112 Ω and 0.592 eV, respectively. The energy distribution of the interface state density Dit was determined from the forward bias I-V characteristics by taking into account the bias dependence of the effective barrier height. The interface state density obtained using the I-V characteristics had an exponential growth, with bias towards the top of the valance band, from 9.44×1013 eV−1 cm−2 in 0.329-Ev eV to 1.11×1013 eV−1 cm−2 in 0.527-Ev eV at room temperature. Furthermore, the values of interface state density Dit obtained by the Hill-Coleman method from the C-V characteristics range from 52.9×1013 to 1.11×1013 eV−1 cm−2 at a frequency range of 30kHz-1 MHz. These values of Dit and Rs were responsible for the non-ideal behaviour of I-V and C-V characteristics.  相似文献   

6.
Monte Carlo simulations show that, at one monolayer coverage, H2 molecules adsorbed on a NaCl(0 0 1) surface occupy all Na+ sites and form a commensurate c(2 × 2) structure. If the Cl sites are occupied as well, a bi-layer p(2 × 1) structure forms. An examination of the H2 molecules’ rotational motion shows the molecular axes are azimuthally delocalized and so both of the structures acquire (1 × 1) symmetry in accord with experimental observations. These calculations also show that helicoptering o-H2 (J = 1, m = ±1) prefer to sit on top of Na+ sites, while cartwheeling o-H2 (J = 1, m = 0) prefers to locate over Cl sites, in agreement with other work.  相似文献   

7.
The infrared absorption spectrum of the ν12 fundamental band of ethylene-d (C2H3D) has been recorded with an unapodized resolution of 0.004 cm−1 in the wavenumber range of 1340-1460 cm−1 using the Fourier transform technique. By assigning and fitting a total of 870 infrared transitions using a Watson’s A-reduced Hamiltonian in the Ir representation, three rotational and five quartic centrifugal distortion constants for the upper state (v12 = 1) were determined for the first time. The rms deviation of the fit was 0.00044 cm−1 which is close to the experimental precision of the absorption lines. The A-type ν12 band centred at 1400.762811 ± 0.000041 cm−1was found to be relatively free from local frequency perturbations. The inertial defect Δ12 was found to be 0.20928 ±  0.00002 μÅ2.  相似文献   

8.
We applied the resonant two-photon ionization and mass-analyzed threshold ionization techniques to record the vibronic and cation spectra of deuterium-substituted isotopomers of o-fluoroaniline (OFA) and m-fluoroaniline (MFA). The origins of the S1S0 electronic transitions and adiabatic ionization energies of these isotopomers were precisely determined.  相似文献   

9.
The spectrum of the ν7 band of cis-ethylene-d2 (cis-C2H2D2) has been recorded with an unapodized resolution of 0.0063 cm−1 in the 740-950 cm−1 region using a Bruker IFS 125 HR Fourier transform infrared spectrometer. By fitting 2186 infrared transitions of ν7 with a standard deviation of 0.00060 cm−1 using a Watson’s A-reduced Hamiltonian in the Ir representation, accurate rovibrational constants for ν7 = 1 state have been derived. The band center of ν7 has been found to be 842.20957 ± 0.00004 cm−1. In a simultaneous fit of 1331 infrared ground state combination differences from the present ν7 transitions, together with 22 microwave frequencies, ground state constants have been improved. The rms deviation of the ground state fit was 0.00027 cm−1.  相似文献   

10.
Relative line intensities of trans- and cis-HONO and -DONO have been measured using absorption spectra in the far-infrared previously recorded by high-resolution Fourier-transform spectroscopy [A. Dehayem-Kamadjeu, O. Pirali, J. Orphal, I. Kleiner, P.-M. Flaud, J. Mol. Spectrosc. 234 (2005) 182-189]. These relative, experimental line intensities (120 lines for trans-HONO and 94 for cis-HONO, as well as 46 lines for trans-DONO and 31 for cis-DONO) were then least-squares fitted leading to the determination of “relative” permanent dipoles moments (b-component) and their rotational corrections for the trans- and cis-HONO and -DONO species. Then these “relative” permanent dipoles moments and their rotational corrections were scaled to the absolute values derived from Stark effect measurements [M. Allegrini, J.W.C. Johns, A.R.W. McKellar, P. Pinson, J. Mol. Spectrosc. 79 (1980) 446-454] and used to generate “absolute” line intensities. These “absolute” line intensities were used to derive the concentrations of the trans- and cis-species in the absorption cell. It was then possible, assuming thermodynamic equilibrium, to use the ratio of the concentrations of the trans- and cis-species to re-determine the energy differences (ΔE) between the ground vibrational states of trans- and cis-HONO: these energy differences are 99 ± 25 cm−1 for HONO and 136 ± 30 cm−1 for DONO. Finally applying zero-point-energy corrections we report an average value for ΔEHONO of 107 ± 26 cm−1. This value is in good agreement with previous experimental studies and with recent high-level ab initio calculations.  相似文献   

11.
A high-resolution (0.002 cm−1) infrared absorption spectrum of methylene fluoride-d2 (CD2F2) of the lowest fundamental mode ν4 in the region from 460 to 610 cm−1 has been measured on a Bruker IFS 120-HR Fourier transform infrared spectrometer. More than 3500 transitions have been assigned in this B-type band centered at 521.9 cm−1. The data have been combined with upper state pure rotational measurements in a weighted least-squares fit to obtain molecular constants for the upper state resulting in an overall standard deviation of 0.00018 cm−1. Accurate value for the band origin (521.9578036 cm−1) has been obtained and inclusion of transitions with very high J (?60) and Ka (?34) values has resulted in improved precision for sextic centrifugal distortion constants, in particular DK, HKJ, and HK.  相似文献   

12.
Fourier-transform far-infrared spectra of CH318OH in the 15-470 cm−1 region have been analyzed by means of the Ritz assignment program. The far-infrared data have been combined with the literature microwave and millimeter-wave measurements in a full global fitting of the first three torsional states (νt = 0, 1, and 2) of the CH318OH ground vibrational state. The fitted dataset includes 550 microwave and millimeter-wave lines and more than 17 000 Fourier-transform transitions covering the quantum number ranges J ? 30, K ? 15, and νt ? 2. With incorporation of 79 adjustable parameters, the global fit achieved convergence with an overall weighted standard deviation of 1.072, essentially to within the assigned measurement uncertainties of ±50 kHz for almost all of the microwave and millimeter-wave lines and ±6 MHz (0.0002 cm−1) to ±15 MHz (0.0005 cm−1) for the Fourier-transform far-infrared measurements. Based on the global fit results, a database has been compiled containing transition frequencies, quantum numbers, lower state energies and transition strengths. This database will provide support for present and future astronomical studies, such as the on-going Orion surveys in preparation for the launch of the Herschel Space Observatory, in identifying isotopic methanol contributions to interstellar spectra.  相似文献   

13.
EPR study of the Cr3+ ion doped l-histidine hydrochloride monohydrate single crystal is done at room temperature. Two magnetically inequivalent interstitial sites are observed. The hyperfine structure for Cr53 isotope is also obtained. The zero field and spin Hamiltonian parameters are evaluated from the resonance lines obtained at different angular rotations and the parameters are: D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.9108±0.0002, gy=1.9791±0.0002, gz=2.0389±0.0002, Ax=(252±2)×10−4 cm−1, Ay=(254±2)×10−4 cm−1, Az=(304±2)×10−4 cm−1 for site I and D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.8543±0.0002, gy=1.9897±0.0002, gz=2.0793±0.0002, Ax=(251±2)×10−4 cm−1, Ay=(257±2)×10−4 cm−1, Az=(309±2)×10−4 cm−1 for site II, respectively. The optical absorption studies of single crystals are also carried out at room temperature in the wavelength range 195-925 nm. Using EPR and optical data, different bonding parameters are calculated and the nature of bonding in the crystal is discussed. The values of Racah parameters (B and C), crystal field parameter (Dq) and nephelauxetic parameters (h and k) are: B=636, C=3123, Dq=2039 cm−1, h=1.46 and k=0.21, respectively.  相似文献   

14.
Rotationally selected infrared spectra of jet-cooled CH3OD have been recorded and analyzed in the OD-stretch region (2710-2736 cm−1). The observed spectra are obtained by monitoring three E-species microwave transitions (1−1 ← 10 at 18.957 GHz, 2−1 ← 20 at 18.991 GHz, and 3−1 ← 30 at 19.005 GHz) in a narrowband cavity Fourier transform microwave spectrometer, using the background-free coherence-converted population transfer technique. Of the four upper state subbands observed, two (K′ = 0 and −2) are split by perturbations. The E-species deperturbed band origin is at 2718.1 cm−1. The deperturbed reduced term values follow a pattern similar to the ground state. This allows the J′ = 0 torsional tunneling splitting to be estimated as 2.1 cm−1, which can be compared to 2.6 cm−1 in the ground state.  相似文献   

15.
The densities ρ, speed of sound u, data of o-toluidine (i) + tetrahydropyran (j) + N,N-dimethylformamide (k) and its {tetrahydropyran (j) + N,N-dimethylformamide (k); o-toluidine (i) + N,N-dimethylformamide (k)} binaries have been measured as a function of composition at 298.15, 303.15 and 308.15 K. The excess molar enthalpies, HE data of same set of binary mixtures have also been measured over entire composition at 308.15 K. The densities and speeds of sound data of binary and ternary mixtures have been utilized to determine their excess molar volumes, VE and excess isentropic compressibilities, κSE. The observed thermodynamic properties of binary and ternary mixtures have been analyzed in terms of Graph theory. It has been observed that Graph theory correctly predicts the sign as well as magnitude of thermodynamic properties.  相似文献   

16.
High level ab initio and DFT calculations have been carried out for silacyclopent-2-ene and its 1,1-d2, 1,1-difluoro, and 1,1-dichloro derivatives. The previously published far-infrared spectra of the ring-puckering vibration, which had been interpreted to be characteristic of a rigid planar molecule, have been reanalyzed for the hydride and 1,1-d2 derivative. Both the spectra and the theoretical calculations show the molecule to have a small barrier to planarity. The experimental data analyzed with a Gaussian barrier produce a barrier of 49 cm−1 as compared to a value of 47 cm−1 computed using the CCSD/6-311++G(d,p) basis set. The experimental value for the deuteride was determined to be 41 cm−1 from the one-dimensional approximation. All MP2 and DFT computations for the 1,1-difluoro derivative predict a planar structure whereas the MP2 computation when used with triple-ζ basis set predicts a barrier of 13 cm−1 for the chloride. Vibrational frequencies were also computed for these molecules and compared to experimental results for the characteristic frequencies for these types of molecules.  相似文献   

17.
Assignments of the vibrational fundamentals of cis- and trans-1,3,5-hexatriene are reevaluated with new infrared and Raman spectra and with quantum chemical predictions of intensities and anharmonic frequencies. The rotational structure is analyzed in the high-resolution (0.0013-0.0018 cm−1) infrared spectra of three C-type bands of the trans isomer and two C-type bands of the cis isomer. The bands for the trans isomer are at 1010.96 cm−1 (ν14), 900.908 cm−1 (ν16), and 683.46 cm−1 (ν17). Ground state (GS) rotational constants have been fitted to the combined ground state combination differences (GSCDs) for the three bands of the trans isomer. The bands for the cis isomer are at 907.70 cm−1 (ν33) and 587.89 cm−1 (ν35). GS rotational constants have been fitted to the combined GSCDs for the two bands of the cis isomer and compared with those obtained from microwave spectroscopy. Small inertial defects in the GSs confirm that both molecules are planar. Upper state rotational constants were fitted for all five bands.  相似文献   

18.
We report experimental data on the highly excited states of zinc in the energy range 74,625-75,740 cm−1 using two-step laser excitation scheme in conjunction with a thermionic diode ion detector. The 4s4p 3P1 inter-combination level at 32501.399 cm−1 was populated using a frequency doubled dye laser. The 4s5s 3S1 level at 53672.28 cm−1 gets populated from the ASE (amplified spontaneous emission) of the second step dye laser. The Rydberg series 4snp 3P2 (12 ? n ? 60), 4snp 1P1 (16 ? n ? 30) and parity forbidden transitions 4sns 3S1 (19 ? n ? 44) have been observed. A two parameter fit to excitation energies of the observed series yields the binding energy of the 4s5s 3S1 level as 22097.03 ± 0.03 cm−1 and consequently, the first ionization potential of zinc is determined as 75769.31 ± 0.05 cm−1, that is in excellent agreement with the earlier work.  相似文献   

19.
The region of the infrared-active band of the ν9 CH2 bending mode [1.1.1]propellane has been recorded at a resolution (0.0025 cm−1) sufficient to distinguish individual rovibrational lines. This region includes the partially overlapping bands ν9 (e′) = 1459 cm−1, 2ν18 (l = 2, E′) = 1430 cm−1, ν6 + ν12 (E′) = 1489 cm−1, and ν4 + ν15 (A2″) = 1518 cm−1. In addition, the difference band ν4 − ν15 (A2″) was observed in the far infrared near 295 cm−1 and analyzed to give good constants for the upper ν4 levels. The close proximities of the four bands in the ν9 region suggest that Coriolis and Fermi resonance couplings could be significant and theoretical band parameters obtained from Gaussian ab initio calculations were helpful in guiding the band analyses. The analyses of all four bands were accomplished, based on our earlier report of ground state constants determined from combination differences involving more than 4000 pairs of transitions from five fundamental and four combination bands. This paper presents the analyses and the determination of the upper state constants of all four bands in the region of the ν9 band. Complications were most evident in the 2ν18 (l = 2, E′) band, which showed significant perturbations due to mixing with the nearby 2ν18 (l = 0, A1′) and ν4 + ν12 (E′) levels which are either infrared inactive as transitions from the ground state, or, in the latter case, too weak to observe. These complications are discussed and a comparison of all molecular constants with those available from the ab initio calculations at the anharmonic level is presented.  相似文献   

20.
J. Wang 《Surface science》2006,600(21):4855-4859
Presented are thermal desorption spectroscopy (TDS) and adsorption probability measurements of iso-butane on the Zn-terminated surface of ZnO. The initial adsorption probability, S0, decreases linearly from 0.57 to 0.22 (±0.02) with impact energy, Ei = 0.74-1.92 eV, and is independent of adsorption temperature, Ts = 91-114 K (±5 K), indicating non-activated molecular adsorption. The coverage, Θ, dependent adsorption probabilities, S(Θ), show a cross-over from adsorbate-assisted adsorption (S increases with Θ) to Kisliuk-like dynamics at about the desorption temperature of iso-butane bi-layers (∼110 K). Thus, the adsorption dynamics are precursor-mediated. The enhanced (gas-surface) mass-match, caused by forming a second layer of the alkane, leads to adsorbate-assisted adsorption. A direct fitting procedure of the TDS data yields a pre-exponential factor of 2.5 × 1013/s and a coverage dependent heat of adsorption of Ed(Θ) = 39 − 6 ∗ Θ + 2.5 ∗ exp(−Θ/0.07) kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号