首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large‐scale zinc oxide (ZnO) nanotetrapods have been grown on p‐type Si (111) substrate by oxidizing zinc pieces in air by thermal evaporation technique without the presence of any catalyst. The size and morphology of the nanostructures was found to depend on experimental parameters. The grown nanostructures were characterized by X‐ray Diffraction (XRD), Photoluminescence (PL), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), High Resolution TEM (HRTEM) and analysis of elemental composition was done by Energy Dispersive X‐ray analysis (EDX). The EDX spectrum shows that the grown product contains Zn and O only. The X‐ray diffraction pattern indicates that the microstructure of the obtained products is typical hexagonal wurtzite ZnO. The optical properties were studied using room temperature PL spectroscopy which indicates that the products are of high optical quality and the near band edge UV transition peak intensity increases with decrease in tetrapod size. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
《Journal of Non》2006,352(21-22):2292-2295
Polyethylene glycol (PEG) was first modified by an inorganic component of 3-(triethoxysilyl)-propyl isocyanate (TEPIC) to form the inorganic/organic polymeric functional precursor. The modified reagent with a functional group (–NHCOO–) further behaves as a bridge which can coordinate to Zn2+ through oxygen atom and further formed Si–O backbones after hydrolysis and polycondensation processes. Subsequently, the corresponding organic/inorganic molecular-based hybrids were assembled to behave as the structural polymeric ligands with the two components equipped with covalent bonds. Finally, ternary zinc/inorganic/organic polymeric hybrid materials with chemical bond (covalent bonds of –CO–NH– and Si–O, coordination bond of Zn–O–C) have been assembled. The resulting hybrids exhibit blue luminescence and nanometer morphology.  相似文献   

3.
We describe a simple etching route for the fabrication of zinc oxalate nanowires, which can be easily converted to zinc oxide nanowires by a simple decomposition process. The zinc oxalate nanowires can be obtained in restricted conditions, for example, when a zinc foil is immersed in ethanolic or propanolic oxalic acid. Interestingly, the nanowires are not obtained in aqueous, methanolic or butanolic oxalic acid. The solubility of zinc oxalate in the solvents and position of favorable precipitation are primarily responsible for determining the morphology of zinc oxalate.  相似文献   

4.
Synthesis of zinc borate was conducted in a laboratory and a pilot scale batch reactor to see the influence of process variables on the reaction parameters and the final product, 2ZnO·3B2O3·3.5H2O. Effects of stirring speed, presence of baffles, amount of seed, particle size and purity of zinc oxide, and mole ratio of H3BO3:ZnO on the zinc borate formation reaction were examined at a constant temperature of 85 °C in a laboratory (4 L) and a pilot scale (85 L) reactor. Products obtained from the reaction in both reactors were characterized by chemical analysis, X-ray diffraction, particle size distribution analysis, thermal gravimetric analysis and scanning electron microscopy. The kinetic data for the zinc borate production reaction was fit by using the logistic model. The results revealed that the specific reaction rate, a model parameter, decreases with increase in particle size of zinc oxide and the presence of baffles, but increases with increase in stirring speed and purity of zinc oxide; however, it is unaffected with the changes in the amount of seed and reactants ratio. The reaction completion time is unaffected by scaling-up.  相似文献   

5.
The structural and infrared properties of the highly (00.2) oriented ZnO film, randomly grown Au-catalyzed ZnO nanowires (NWs) and vertically aligned self-catalyzed ZnO NWs were compared. In the XRD analysis, (0 0 2) diffraction intensity of self-catalyzed ZnO NWs was enhanced mainly attributed to the preferential growth of NWs in [0 0 0 1] as compared to the ZnO film and the randomly grown Au-catalyzed ZnO NWs. The high UV-to-green emission ratio of self-catalyzed ZnO NWs in room temperature PL measurement indicates that they had a better crystal quality as compared to Au-catalyzed ZnO NWs and ZnO film. Infrared spectroscopy has been used to characterize these films and nanowires too. The phonon peak 407 cm−1 which related to the transverse optical (TO) vibrations perpendicular to the optical axis was observed in the IR reflectivity measurements on the highly c-oriented ZnO film. The IR peaks that appeared in the 550–580 cm−1 region of the spectra of the specimens could be assigned to the ZnO NWs as it was not observed in the ZnO film. These peaks were observed in the 550–580 cm−1 region in both s- and p-polarized light for the randomly grown Au-catalyzed ZnO NWs. In contrast, the IR peak at 580 cm−1 was clearly shown in p-polarized light but not in the s-polarized light for vertically aligned ZnO NWs. This indicated that the vibration was polarized along the vertically aligned ZnO NWs. The (00.2) orientation of the ZnO specimens could be identified by comparing the p- and s-polarized IR spectra.  相似文献   

6.
High purity nanorods of vanadium doped zinc oxide with five different concentrations are prepared by a well known ceramic double sintering method. XRD patterns of the samples reveal a wurtzite phase formation. SEM micrographs confirm the nanorods in the samples. Purity of the samples is characterised using EDX analysis. UV–Vis–NIR study of the samples shows a red shift in bandgap for the substitution of V in ZnO matrix. FTIR study confirms the presence of defect states and enhancement of covalent bonding over ionic bond due to the incorporation of the V ions into ZnO lattice. An ultimate find we report in the present work is that the addition of V in ZnO could smoothly tailor the optical bandgap energy due to formation of the exciton states. An enhancement of covalent bonding in V doped ZnO will provide a platform for the third order susceptibility or photonic applications.  相似文献   

7.
Wet silica gels with ∼1.4 × 10−3 mol SiO2/cm3 and ∼90 vol.% liquid phase were prepared from the sonohydrolysis of tetraethoxysilane (TEOS) with different additions of dimethylformamide (DMF). Aerogels were obtained by CO2 supercritical extraction. The samples were studied mainly by small-angle X-ray scattering (SAXS) and nitrogen adsorption. Wet gels exhibit a mass fractal structure with fractal dimension D increasing from 2.23 to 2.35 and characteristic length ξ decreasing from ∼9.4 nm to ∼5.1 nm, as the DMF/TEOS molar ratio is increased from 0 to 4. The supercritical process apparently eliminates some porosity, shortening the fractality domain in the mesopore region and developing an apparent surface/mass fractal (with correlated mass fractal dimension Dm ∼ 2.6 and surface fractal dimension Ds ∼ 2.3) in the micropore region. The fundamental role of the DMF addition on the structure of the aerogels is to diminish the porosity and the pore mean size, without, however, modify substantially the specific surface area and the average size of the silica particle of the solid network.  相似文献   

8.
Sonohydrolysis of mixtures of tetraethoxysilane (TEOS) and tetramethoxysilane (TMOS) with different TMOS/(TMOS + TEOS) molar ratio R was carried out to obtain ∼2.0 × 10−3 mol SiO2/cm3 and ∼86%-volume liquid phase wet gels. Aerogels were obtained by supercritical CO2 extraction in autoclave. The samples were analyzed by small-angle X-ray scattering (SAXS) and nitrogen adsorption. The structure of the wet gels can be described as a mass fractal structure with fractal dimension D ∼ 2.2 and characteristic length ξ increasing from ∼4.6 nm for pure TEOS to ∼6.4 nm for pure TMOS. A fraction of the porosity is eliminated with the supercritical process. The fundamental role of the TMOS/(TMOS + TEOS) molar ratio on the structure of the aerogels is to increase the porosity and the pore mean size as R changes from pure TEOS to pure TMOS. The supercritical process increases the mass fractal dimension and shortens the fractality domain in the mesopore region. A secondary structure appearing in the micropore region of the aerogels can be described as a mass/surface fractal structure with correlated mass fractal dimension Dm ∼ 2.6 and surface fractal dimension Ds ∼ 2.3.  相似文献   

9.
Tip-growth and base-growth modes of Au-catalyzed zinc oxide nanowires (ZnO NWs) were synthesized on Au-film pre-deposited silicon substrates using Chemical Vapor Deposition (CVD) technique. The diameter of tip-growth Au-catalyzed ZnO NWs was proportional to the Au film thickness, whereas the areal density of these NWs was inversely proportional to the Au film thickness. It would be more appropriate to explain the growth of Au-catalyzed ZnO NWs by a combination of Vapor–Liquid–Solid and Vapor–Solid (VLS–VS) mechanisms instead of the conventional VLS mechanism, regardless of tip-growth or base-growth mode of Au-catalyzed ZnO NWs. The competition between the VLS and VS mechanism in the effectiveness of capturing the adsorbed Zn and O atoms would determine the final morphology of ZnO NWs. In addition, Au catalyst promoted the growth rate of NWs as compared to the self-catalyzed ZnO NWs.  相似文献   

10.
Two facile and efficient methods, to synthesize zinc oxide (ZnO) particles with different morphologies, have been reported here. Thermal decomposition route yielded micron sized irregular shaped ZnO particles. While co‐precipitation method rendered transparent flakes which then transformed to hexagonal discs with relatively more uniform size and shape. These hexagonal discs were further converted to the cone type morphology when hexamethylenetetramine was added in the precursor solution. However, spherical type ZnO nanoparticles were obtained by incorporating polyvinyl alcohol during co‐precipitation strategy. XRD confirmed the formation of wurtzite structure in all the samples. FTIR spectroscopy revealed the presence of ZnO characteristic peaks. Moreover, 3‐D directional growths and the presence of UV‐Vis broadband multi‐absorption peaks, and green to orange photoluminescence emissions confirmed the potential application of the synthesized ZnO particles in various piezoelectric and luminescence applications.

  相似文献   


11.
In this work, the interaction of amorphous silica-zirconia mixed oxide samples obtained from inorganic-organic silica-based hybrid materials with pyridine and CO2 was studied to investigate their acid/base character. Several silica-zirconia mixed oxide powders characterized by different [Zr/Si] atomic ratios were prepared and treated at increasing temperatures both in a conventional muffle and with microwave technology. The powder samples were characterized with Diffuse Reflectance Infrared Fourier Transform (DRIFT) and X-ray Photoelectron (XP) spectroscopies. The surface acidic and basic active sites were investigated (with DRIFT spectroscopy) by chemisorbing probe molecules (pyridine, carbon dioxide). The obtained results revealed the presence of both Lewis and Brønsted acidic sites on the amorphous silica-zirconia mixed oxide powder surfaces. Several acidic sites characterized by different strength were observed; the acidic sites distribution is markedly influenced by the sample composition and by the heat treatment: more numerous acidic sites form on the surface of the samples treated with microwaves with respect to the muffle treated ones; the increment of the temperature and the decrease of the zirconium content cause a significant decrement of the acidic sites. No basic sites were revealed.  相似文献   

12.
Shape evolution of ZnO crystals from twinned disks to single spindles was studied through solvothermal synthesis in binary solvents N,N-diethylformamide (DEF) and methanol (MeOH). The MeOH content in DEF had large influence on the morphology of the obtained ZnO crystals. In MeOH-free DEF, well-shaped ZnO twinned disks with perfect mirror symmetry could be formed through the assembly of ZnO46−–julolidinium–ZnO46− growth units on the (0 0 0 1) growth interfaces. For small amounts of MeOH (MeOH/DEF=0.04), elongated twinned disks were formed since the growth along the polar c-axis was enhanced. With increasing MeOH content (MeOH/DEF=0.1), twinned rods with reduced mirror symmetry were formed. When a large amount of MeOH was added to DEF (MeOH/DEF=0.5), single spindles rather than twinned disks or twinned rods were obtained. A similar shape evolution of zinc oxide was observed in binary solvents DEF and N,N-dimethylformamide (DMF), suggesting that the growth of ZnO crystals with tuneable shape and size can be controlled by the composition of the binary solvent mixture.  相似文献   

13.
ZnO nanoparticles as small as 80 nm were successfully synthesized using a modified vapor phase transport (VPT) process at substrate temperatures as low as 222 °C. Particle size distribution and morphology were characterized by scanning electron microscopy and atomic force microscopy. Energy dispersive X-ray spectroscopy and X-ray diffraction indicate the synthesis of high quality crystalline ZnO structures. Low temperature (4.2 K) photoluminescence (PL) spectroscopy was used to characterize the optical quality of the nanoparticles. Ultraviolet emission and a nanostructure specific feature at 3.366 eV are strong in the PL spectra. The 3.366 eV feature is observed to predominate the spectrum with decrease in particle size. This size effect corroborates the luminescence as a nanostructure-specific surface related exciton feature as previously speculated in the literature. In addition, self-assembled ZnO mesoparticles (>100 nm) were realized by increasing the growth time. Low growth temperatures of the particles allow for their potential utilization in flexible organic hybrid optoelectronics. However, this work focuses mainly on the modified synthesis and optical characterization of nanoparticles.  相似文献   

14.
Micro scale zinc oxide-polyvinyl alcohol (ZnO–PVA) composite has been synthesized by ultrasound irradiation. The properties of the as-prepared ZnO–PVA composite material are characterized by X-ray diffraction (XRD), thermo gravimetric analysis (TGA), transmission electron microscopy (TEM), and diffuse reflection spectroscopy (DRS). A band gap of 3.25 eV is estimated from DRS measurements. The controlled crystal growth of zinc oxide has been studied by using the as-prepared micro scale ZnO–PVA composite as seeds for the crystal growth of ZnO.  相似文献   

15.
The zinc oxide thin films were deposited by the sol–gel method on the glass microscope slide substrates. The microstructure of films was determined as a function of film thickness as well as annealing temperature using X-ray line broadening technique and applying whole powder pattern modeling (WPPM). This investigation showed that the film thickness has no significant effect on the grain size, whereas the dislocation density decreases with the film thickness. On the other hand with the rise of annealing temperature the dislocation density decreases, but the crystallite size becomes larger.  相似文献   

16.
A simple growth technique capable of growing a variety of zinc oxide (ZnO) nanostructures with record growth rates of 25 μm/s is demonstrated. Visible lengths of ZnO nanowires, nanotubes, comb-like and pencil-like nanostructures could be grown by employing a focused CO2 laser-assisted heating of a sintered ZnO rod in ambient air, in few seconds. For the first time, the growth process of nanowires was videographed, in-situ, on an optical microscope. It showed that ZnO was evaporated and presumably decomposed into Zn and oxygen by laser heating, reforming ZnO nanostructures at places with suitable growth temperatures. Analysis on the representative nanowires shows a rectangular cross-section, with a [0 0 0 1] growth direction. With CO2 laser heating replacing furnace heating used conventionally, and using different reactants and forming gases, this method could be easily adopted for other semiconducting inorganic nanostructures in addition to ZnO.  相似文献   

17.
Novel hierarchical nano materials possess tremendous latent force in many applications. In this paper, hierarchical flower‐like, spherical and bowl‐like zinc oxide was successfully synthesized by altering solvent ratio (absolute ethanol and diethylene glycol) via a simple and template‐free solvothermal synthetic route. The solvent ratio also plays a vital role in deciding the structure, crystalline, band gap energy and specific surface area of the as‐synthesized samples. The preparation mechanism of ZnO in mixed alcohols was discussed. The obtained samples were characterized by energy dispersive spectroscopy(EDS), X‐ray diffraction (XRD), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), N2 adsorption‐desorption, UV–vis diffuse reflectance spectroscopy (DRS). Photocatalytic activity of the as‐prepared ZnO nanocrystals was evaluated by the degradation of MB under UV irradiation. Among, the most effective photocatalyst was synthesized when the diethylene glycol was 10 ml.  相似文献   

18.
ZnO crystals were synthesized from basic aqueous solutions including zincate ions stabilized with triethanolamine (N(C2H4OH)3, teaH3) by heating at 60°C. The influence of the basicity of the solutions on the morphology of the ZnO crystals was examined. The aqueous solutions were prepared using ZnSO4·7H2O, N(CH3)4OH (TMAOH), and teaH3 as a zinc source, a base, and a stabilizer, respectively, at a zinc concentration of 0.2 M at a teaH3 / Zn molar ratio of 4. Clear solutions were obtained at a molar ratio of TMAOH / Zn ≥ 3.0. When the clear solutions, in which glass or polyester substrates were placed, were heated at 60°C, agglomerates of ZnO crystals were deposited on the substrates in the TMAOH / Zn range from 3.0 to 3.6. With increasing the TMAOH / Zn ratio, the shape of the resulting ZnO crystals changed from a short asymmetric column with a hexagonal flat edge and a rounded one, through a rocket‐like shape formed by intergrowth, to a hexagonal rod. Although no films of ZnO were formed, ZnO crystals with different shapes were synthesized. When the glass substrates pre‐coated with a ZnO thin film by a sol‐gel method were used, highly oriented, dense ZnO films were formed. The films consisted of rod‐like crystals aligned normal to the substrate surface. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
S. Basu 《Journal of Non》2006,352(5):380-385
Iron nanoparticles of diameter ∼5 nm were produced within a gel-derived silica glass by reducing a suitable gel composition. By heating these composites in the temperature range 573-973 K, Fe3O4 shells of a few nanometer thickness were grown around the iron nanoparticles. Three peaks were observed in the optical absorption spectra of the nanocomposites when they were dispersed in ethyl alcohol. The first one around 300 nm was caused by plasma resonance absorption of unoxidized iron particles; the second was shown to be due to the core-shell structure with different permittivities of the two regions and the third one was ascribed to a d-d transition. Detailed analyses of the second peak showed that the extracted values of electrical conductivity were below Mott’s minimum metallic conductivity for iron in the case of particles with diameters below ∼2.5 nm.  相似文献   

20.
Carbon aerogels with high BET surface area were developed by sol-gel polycondensation of resorcinol and furfural in isopropanol using hexamethylenetetramine (HMTA) as a catalyst, and then directly drying the organic gels under isopropanol supercritical conditions, followed by carbonization under a nitrogen atmosphere. The preparation conditions of carbon aerogels were explored by changing the mole ratio of resorcinol to basic catalyst HMTA (R/C), the ratio of resorcinol to isopropanol (R/I), and the mole ratio of resorcinol to furfural (R/F). The effect of these preparation conditions on the porous structure of the carbon aerogels obtained was studied by nitrogen adsorption isotherms. According to the characterizations of TEM, SEM and nitrogen adsorption, the carbon aerogels obtained have a three-dimensional network that consists of carbon nano-particles with size from 20 to 30 nm, which define numerous micropores, mesopores and macropores. HMTA reacts not only as a catalyst but also as a reagent in the gelation polymerization. XRD characterization indicates that carbon aerogels have disordered nanocrystalline structures similar to activated carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号