首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Er2O3-doped Bi2O3-B2O3-Ga2O3 glasses were prepared by the conventional melt-quenching method, and the Er3+:4I13/2 → 4I15/2 fluorescence properties are studied for different Er3+ concentrations. when the Er2O3 concentration increases from 0.03 to 3.0 mol%, the measured lifetime of Er3+:4I13/2 level decrease from 2.24 to 0.9 m s, and from 0.25 to 0.20 m s for the Er3+:4I11/2 level. The fast energy migration among Er3+ ions cause the reduction of lifetime of the 4I13/2 level, whereas the change in the 4I11/2 level is mainly due to a cooperative upconversion process (4I11/24I11/2) → (4F7/24I15/2). Based on the dipole-dipole interaction theory, the interaction parameter, CEr,Er, for the migration rate of Er3+:4I13/2 ↔ 4I13/2 was calculated to be 32 × 10−40 cm6 s−1.  相似文献   

2.
Q. Qian  G.F. Yang  Z.M. Yang  Z.H. Jiang 《Journal of Non》2008,354(18):1981-1985
Spectroscopic properties of Er3+-doped Na2O-Sb2O3-B2O3-SiO2 glasses have been investigated for developing 1.5-μm broadband fiber amplifiers. An intense 1.5-μm near infrared emission with a broad full width at half maximum (FWHM) of 88 nm has been obtained for Er3+-doped 5Na2O-20Sb2O3-35B2O3-40SiO2 glass upon excitation with a 980 nm laser diode. The obtained emission cross-section of the 4I13/2 → 4I15/2 transition and the lifetime of the 4I13/2 level of Er3+ ions are 6.8 × 10−21 cm2 and 0.36 ms, respectively. It is noted that the product of the emission cross-section and the FWHM of the glass, σe × FWHM, is as great as 598.4 × 10−21 cm2 nm, which is comparable or higher than that of Er3+-doped bismuth-based and tellurite-based glasses. These special optical properties encourage in identifying them as important materials for potential applications in high performance optics and optical communication networks.  相似文献   

3.
A study of the mechanisms responsible for the infra-red to near infra-red up-conversion in Tm3+-doped silica fibers is presented. Up-conversion luminescence was observed from the 3H4 level of Tm3+ under 1586 nm pumping into the 3F4 level. The quadratic dependence of the up-conversion luminescence at 800 nm on the 1800 nm luminescence from the 3F4 level confirms that the 3H4 level is populated by a two photon process. Two possible processes are proposed as mechanisms responsible for the up-conversion: excited state absorption and energy transfer up-conversion. The decay characteristics of the luminescence from the 3H4 level were studied under direct and indirect pumping at 786 and 1586 nm, respectively. By comparing the decay waveforms to the solution of a simple set of rate equations, the energy transfer up-conversion process (3F4, 3F4 → 3H4, 3H6) was established at Tm2O3 concentrations greater than 200 ppm.  相似文献   

4.
Transparent amorphous and glass-ceramics waveguides in the system ZrF4-LaF3-ErF3-AlF3 (ZELA) have been fabricated by physical vapor deposition (PVD). The ceramming process was studied by means of X-ray diffraction and transmission electron microscopy for different deposition temperatures. With increasing deposition temperature, formation of LaxEr1−xF3 nanocrystals with x ∼ 0.3 was observed. The decay curves of the 4I13/2 level in the glass-ceramics with 14.5 mol% Er3+ gave evidence of the presence of erbium both in the amorphous matrix (τ = 8.6 ms) and in the crystal phase (τ = 2.2 ms). The decrease of lifetime was due to clustering of erbium incorporated in LaF3 crystal lattice. No significant increase of attenuation loss was detected after waveguide cerammization (1.3 dB/cm at 1304 nm).  相似文献   

5.
Z. Pan  A. Ueda  M. Hays  R. Mu  S.H. Morgan 《Journal of Non》2006,352(8):801-806
An erbium doped germanate-oxyfluoride glass 60GeO2 · 20PbO · 10PbF2 · 10CdF2 (GPOF) and a tellurium-germanate-oxyfluoride glass 30TeO2 · 30GeO2 · 20PbO · 10PbF2 · 10CdF2 (TGPOF) were prepared in the bulk form. By appropriate heat treatment of the as-prepared glasses above, transparent glass-ceramics were obtained with the formation of β-PbF2 nanocrystals in the glass matrix confirmed by X-ray diffraction. Optical absorption and photoluminescence measurements were performed on as-prepared glass and glass-ceramics. The luminescence of Er3+ ions in transparent glass-ceramics revealed sub-band splitting generally seen in a crystal host. The intensity of red and near infrared luminescence significantly increased in transparent glass-ceramic compared to that in as-prepared glass. Two luminescence bands at 758 nm from 4F7/2 → 4I13/2 and at 817 nm from 2H11/2 → 4I13/2 transitions were observed from transparent glass-ceramic but cannot be seen from the corresponding as-prepared glass. These results are attributed to the change of ligand field of Er3+ ions and the decrease of effective phonon energy when Er3+ ions were incorporated into the precipitated β-PbF2 nanocrystals.  相似文献   

6.
The Er3+ doped transparent oxyfluoride glass ceramics were obtained by appropriate heat treatment of the precursor glasses with composition (mol%) 50SiO2-xPbF2-(50 − x)PbO-0.5ErF3. The microstructure and optical properties of the glasses and glass ceramics were determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), absorption spectra and luminescence spectra. The intensity of upconversion luminescence significantly increased in glass ceramics compared to that in precursor glass. The emission bands centered around 660 nm (4F9/2 → 4I15/2) and 410 nm (2H9/2 → 4I15/2) were simultaneously observed in glass ceramics but cannot be seen in the corresponding precursor glass. The influence of different PbF2 content on the microstructure and upconversion luminescence of the samples was analyzed in detail. The results indicated that with the increase of PbF2 content, the Ω2 was almost the same and the ratios of red to green upconversion luminescence decreased in glass ceramics.  相似文献   

7.
The upconversion properties of Er3+ ions were studied for heavy metal oxyfluoride tellurite glass hosts xPbF2-(100−x)TeO2 under 975 nm excitation. The intense green (529 and 545 nm) and relative weak red (657 nm) emissions corresponding to the transitions 4S3/2 → 4I15/2, 2H11/2 → 4I15/2 and 4F9/2 → 4I15/2, respectively, were simultaneously observed at room temperature. The PbF2 content has an important influence on upconversion luminescence emission. With increasing PbF2 content, the intensities of green (529 nm) and red (657 nm) emissions increase slightly, while the green (545 nm) emission increases significantly. These results indicate that PbF2 has more influence on the green (545 nm) emission than the green (529 nm) and red (657 nm) emissions. The intense green emission observed suggest that Er3+-doped heavy metal oxyfluoride tellurite glasses can become candidates for developing upconversion optical devices.  相似文献   

8.
Energy transfer processes between Er3+ and Tm3+ were investigated examining the frequency upconversion emissions in a fluoroindate glass pumped at 790 nm. A 60-fold enhancement in the emission at ≈670 nm originating from Er3+ was observed when Tm3+ at concentration of 2% was introduced in a sample containing 2% of Er3+. The results are explained considering the influence of cross-relaxation processes between the active ions.  相似文献   

9.
B. Faure  G. Monnom 《Journal of Non》2007,353(29):2767-2773
The role of some glass network modifiers on the quantum efficiency of the near-infrared fluorescence from the 3H4 level of Tm3+ ion in silica-based doped fibers is studied. Modifications of the core composition affect the spectroscopic properties of Tm3+ ion. Adding 17.4 mol% of AlO3/2 to the core glass caused an increase of the 3H4 level lifetime up to 50 μs, 3.6 times higher than in pure silica glass. The quantum efficiency was increased from 2% to approximately 8%. On the opposite, 8 mol% of PO5/2 in the core glass made the lifetime decrease down to 9 μs. These changes of Tm3+ optical properties are assigned to the change of the local phonon energy to which they are submitted by modifiers located in the vicinity of the doping sites. Some qualitative predictions of the maximum achievable quantum efficiency are possible using a simple microscopic model to calculate the non-radiative de-excitation rates.  相似文献   

10.
In this work, we have prepared a sol-gel derived hybrid material directly doped with Er1.4Yb0.6(Benzoate)6(Phen)2 (Phen = 1,10-phenanthroline) complex, which was reported with intramolecular Yb-Er energy-transfer process in our previous work. The infrared (IR) spectra of the pure complex and hybrid gel material were investigated. The NIR photoluminescence (PL) spectrum of hybrid gel material shows strong characteristic emission of Er3+ with broad full width at half-maximum (FWHM) of 70 nm. Judd-Ofelt theory was used in order to analyze the optical properties of Er3+ ions in the hybrid gel material.  相似文献   

11.
A Er3+ and Yb3+ co-doped transparent oxyfluoride glass ceramic containing BaF2 nanocrystals has been prepared. The formation of BaF2 nanocrystals in the glass ceramic was confirmed by X-ray diffraction. Intense upconversion luminescence in the Er3+ and Yb3+ co-doped glass ceramic could be observed. Stark splitting of the Er3+ upconversion luminescence peaks in the glass ceramic indicated that Er3+ and Yb3+ had been incorporated into the BaF2 nanocrystals. Near infrared luminescence decay curves showed that the Er3+ and Yb3+ co-doped glass ceramic had higher luminescence efficiency than the precursor glass.  相似文献   

12.
Er3+-doped strontium lead bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Ωt (t = 2, 4, 6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Ω2 = 2.95 × 10−20, Ω4 = 0.91 × 10−20, and Ω6 = 0.36 × 10−20 cm2. Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H11/2 → 4I15/2, 4S3/2 → 4I15/2, and 4F9/2 → 4I15/2, respectively, were observed. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived 4I11/2 level is supposed to serve as the intermediate state responsible for the upconversion processes.  相似文献   

13.
In this paper we describe fabrication and characterization of rare-earth-doped active tellurite glasses to be used as active laser media for fiber lasers emitting in the 2 μm region. The base composition is (mol%): 75TeO2-20ZnO-5Na2O with different concentrations of Tm3+, Yb3+ and Ho3+ as dopants or co-dopants. Optical properties of doped glasses were studied and pumping at 800 nm and at 980 nm were tested in order to compare the efficiency of two pumping mechanisms. Optical characterization carried out on glasses containing only Tm3+ ions indicated the optimum concentration of Tm2O3 in terms of emission efficiency as 1 wt%. The addition of 5 wt% of Yb2O3 to Tm3+-doped glasses led to the best results in terms of intensity of fluorescence emission and of lifetime values. Yb and Ho co-doped Tm-tellurite glass was measured in emission.  相似文献   

14.
The violet (∼400-410-nm) fluorescence in Er3+:ZB(L)AN glasses has been previously attributed to transitions originating from the 2H9/2 and 2P3/2 levels. The study reported here found that, in high Er3+ concentrations and with 800-nm excitation, a significant source of violet fluorescence around 407-nm was due to the previously unreported 4G9/2 → 4I9/2 transition. The study also established that, under these conditions, a three-ion energy transfer process originating in the 4I9/2 level is responsible for populating of the fluorescing 4G9/2 level.  相似文献   

15.
In this paper, optical properties of 75TeO2-20ZnO-5Na2O host glass doped with concentration of Tm3+ up to 10 %mol were studied in order to assess the most suitable rare earth content for short cavity fiber lasers. Raman spectroscopy revealed a change in the glass structure while increasing Tm3+ content, similar to the well known addition of alkali ions in a glass. Influence of the fabrication process on the OH content was determined by FTIR measurements. Refractive index of Tm3+ doped tellurite glasses was measured at five different wavelengths ranging from 533 nm to 1533 nm. Lifetime and emission spectra measurements of the Tm3+ doped tellurite glasses are reported.  相似文献   

16.
Population dynamics of the 3F4 and 3H4 levels in Tm3+ doped ZB(L)AN glasses was studied for Tm3+ concentrations from 0.5 to 12 mol%. Fluorescence waveforms from these levels were measured at 1.8 μm (3F4) and 800 nm (3H4) with both direct and indirect pumping. Decay from the 3F4 level was found to be exponential with non-radiative decay rates proportional to the square of the Tm concentration. This indicated a process of energy migration by diffusion within the excited Tm3+ ions followed by quenching at sites to which the ions could migrate. The decay of the directly pumped 3H4 level exhibited both exponential and non-exponential behavior depending on the concentration. For the lowest concentration (0.5 mol%) the decay was exponential, but at concentrations of 1, 2, 4 and 6 mol% the decay waveforms were distinctly non-exponential. The non-exponential waveforms could be fitted by the Yokota-Tanimoto model for diffusion of excited donors and dipole-dipole interactions with acceptors. This model produced values for CDD and CDA, the donor-donor and donor-acceptor energy transfer parameters, respectively. At the higher concentrations (8, 10, 12 mol%) the waveforms were exponential with decay rates from which the cross-relaxation parameter for the process 3H4, 3H6 → 3F4, 3F4 was obtained. When the 3F4 level is pumped at 1660 nm, the decay of the 3H4 level confirmed the influence of the up-conversion energy transfer process 3F4, 3F4 → 3H4, 3H6.  相似文献   

17.
High quality Er3+/Tm3+:LiYF4 single crystals were grown by a Bridgman method. The absorption spectra and luminescent properties of the crystals were studied to characterize the effect of Tm3+ on the spectroscopic properties upon excitation of an 800 nm laser diode. The broaden 1.5 μm and the enhanced 2.7 μm emission were observed in the Er3+/Tm3+ co‐doped LiYF4 single crystals. Meanwhile, the up‐conversion and 1.5 μm emission intensities from Er3+ decrease with increasing the ratio of Tm3+ to Er3+. The energy transfer processes between Tm3+ and Er3+ in the Er3+/Tm3+ co‐doped samples were analyzed. The energy transfer efficiency ηETE from Er3+ to Tm3+ is calculated. The highest ηETE of 65.30% for the sample with 0.296 mol% of Er3+, 0.496 mol% of Tm3+ concentration was obtained. The present work indicates that Er3+/Tm3+ co‐doped LiYF4 single crystal can be a promising material for the potential application in infrared devices.  相似文献   

18.
In previous years there has been great interest in new materials for photonic devices operating at infrared (IR) and visible (VIS) regions. We report here near infrared and blue cooperative luminescence properties for Yb3+-doped GeO2-PbO glasses. Luminescence and lifetime measurements in the VIS and near-IR regions were performed to investigate the spectroscopic characteristics of the glasses. Intense emissions around 507 and 1010 nm were observed using 980 and 808 nm excitation, respectively. The VIS lifetimes (∼0.4 ms) are about half of their respective near infrared ones (∼0.8 ms), as expected for materials in which the VIS emission is caused by the cooperative effect. Regarding the IR emission, the glasses exhibited a high absorption cross-section (1.2 × 10−20 cm2) at 978 nm and an emission cross-section of 0.6 × 10−20 cm2, at 1010 nm, with a minimum pump intensity of 2.8 kW/cm2. These results suggest this glass composition as a potential material to be used in devices operating in the VIS and IR spectral range, such as 3-D displays and infrared lasers.  相似文献   

19.
A high optical quality erbium doped Lu2SiO5 single crystal has been grown by the Czochralski method. The distribution coefficient of Er3+ was measured to be ∼0.926. The absorption and emission spectra as well as the fluorescence decay curve of the excited state 4I13/2 were measured at room temperature. The spectroscopic parameters were calculated using the Judd–Ofelt theory, and the J–O parameters Ω2, Ω4 and Ω6 were found to be 4.451×10-20, 1.614×10-20 and 1.158×10-20 cm2, respectively. The room-temperature fluorescence lifetime of the Er3+4I13/24I15/2 transition was measured to be 7.74 ms. The absorption and emission cross-section as well as the gain cross-section in the eye-safe regime of 1400–1700 nm were also determined and discussed.  相似文献   

20.
Chunlei Yu  Junjie Zhang 《Journal of Non》2007,353(27):2654-2658
Er3+ doped multicomponent fluoride based glass was prepared. These precursor fluoride glass samples were then heated using different schedules. Crystalline phase particles were successfully precipitated in the multicomponent fluoride glass samples after heat treatment. The influence of heat treatment on the spectroscopic properties of Er3+ in multicomponent fluoride based glass samples were discussed. Small changes of the Judd-Ofelt parameters Ωi (i = 2, 4, 6) were found in multicomponent fluoride glass samples before and after heat treatment compared to oxyfluoride telluride glass. Preparation conditions used to produce transparent multicomponent fluoride glass ceramics doped with rare-earth ions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号