首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we have calculated the broadening and first order line mixing parameters for over 100 transitions in the 30012 ← 00001 and 30013 ← 00001 bands of carbon dioxide. The calculations were performed over the 193–323 K temperature range for pure CO2 and lean mixtures of CO2 and air. The elements of the relaxation matrices were calculated at the appropriate physical conditions using the Exponential Power Gap (EPG) and Energy Corrected Sudden (ECS) scaling laws. We have compared our calculated low pressure line mixing parameters and the broadening coefficients with experimental results from two previous studies in our group available at 217, 234, 258 and 296 K. At all temperatures, the calculated broadening coefficients were also compared with those available in the HITRAN database.  相似文献   

2.
In this work we present a line profile study for air-broadened carbon dioxide transitions in the 30012 ← 00001 and 30013 ← 00001 vibrational bands. The room temperature spectra were recorded at a resolution of 0.008 cm−1 using a Fourier Transform spectrometer. The air-broadening, air-shift, and air-line mixing coefficients were derived from a simultaneous fitting of spectra using the Voigt model and a Speed-Dependent Voigt lineshape model. The results obtained are consistent with other studies in addition to the theoretically calculated values. Exponential Power Gap (EPG) and Energy Corrected Sudden (ECS) scaling laws were used to calculate the relaxation matrix elements.  相似文献   

3.
Using a Fourier transform spectrometer setup we have measured the self-broadened half width, pressure shift, and line asymmetry coefficients for transitions in the 30012←00001 and 30013←00001 vibrational bands of carbon dioxide for four different temperatures. A total of 46 pure CO2 spectra were recorded at 0.008 and 0.009 cm−1 resolution and at pressures varying from a few Torr to nearly an atmosphere. The individual spectral line profiles have been fitted by a Voigt profile and a speed-dependent Voigt profile, to which we have added dispersion profiles to account for weak line mixing. A comparison of the sets of results obtained for each band showed no vibrational dependence of the broadening coefficients. The self-broadening and self-shift coefficients are compared to semiclassical calculations based on the Robert-Bonamy formalism and were found to be in good agreement. The line asymmetry results are compared to line mixing calculations based on the Energy Corrected Sudden (ECS) and Exponential Power Gap models.  相似文献   

4.
5.
Line position, intensity and line shape parameters (Lorentz widths, pressure shifts, line mixing, speed dependence) are reported for transitions of the 30013 ← 00001 band of 16O12C16O (ν0 = 6227.9 cm−1). The results are determined from 26 high-resolution, high signal-to-noise ratio spectra recorded at room temperature with the McMath-Pierce Fourier transform spectrometer. To minimize the systematic errors of the retrieved parameters, we constrained the multispectrum nonlinear least squares retrieval technique to use quantum mechanical expressions for the rovibrational energies and intensities rather than retrieving the individual positions and intensities line by line. Self- and air-broadened Lorentz width and pressure-induced shift, speed dependence and line mixing (off-diagonal relaxation matrix elements) coefficients were adjusted individually. Errors were further reduced by simultaneously fitting the interfering absorptions from the weak 30012 ← 00001 band of 16O13C16O as well as the weak hot bands 31113 ← 01101, 32213 ← 02201, 40014 ← 10002 and 40013 ← 10001 of 16O12C16O in this spectral window. This study complements our previous work on line mixing and speed dependence in the 30012 ← 00001 band (ν0 = 6347.8 cm−1) [V.M. Devi, D.C. Benner, L.R. Brown, C.E. Miller, R.A. Toth, J. Mol. Spectrosc. 242 (2007) 90-117] and provides key data needed to improve atmospheric remote sensing of CO2.  相似文献   

6.
The absorption spectra of carbon dioxide (isotope 626, natural abundance in air, ambient temperature) have been studied at total pressures 68-570 Torr with spectral resolution 0.003-0.005 cm−1. The spectra were measured in the spectral domain of 2273-2393 cm−1 by FTIR spectrometer Bruker IFS 125 HR equipped with White-type multipass cell (6.4-41.6 m) and with a cell having 10 cm optical path length. Pressure broadening and shift coefficients were obtained from a series of spectra by means of a nonlinear least-squares spectral fitting technique for the lines of the (00011)←(00001) band with rotational quantum number up to J=82. For fitting of the individual line shapes, we used the Voigt profile with pre-calculated Doppler broadening parameter. The experimental pressure broadening and shift coefficients are compared with the values available in spectroscopic databases HITRAN 2008 and Carbon Dioxide Spectroscopic Databank (CDSD-296) and with other experimental values reported in the literature.  相似文献   

7.
8.
The 0310 ← 0110 parallel Q branch of N2O has been studied at 297 K and over the pressure range 1-130 torr. Absorption spectra were recorded using a high resolution (1.5 MHz or 5 × 10−5 cm−1) and high signal-to-noise (>3500:1) mid-infrared spectrometer based on difference-frequency infrared generation in AgGaS2. In the low-pressure range (1-11 torr) we obtained accurate values for the line strengths, the broadening coefficients, the weak mixing coefficients, and the overall shifting of the branch. The medium pressure results, ranging from 23 to 130 torr, were analyzed by treating the band as a whole, using a relaxation matrix formalism, based on an energy gap scaling law. We find, effectively, that only 36% of the rotationally inelastic collisions are associated with Q branch mixing, the rest presumably being associated with Q-P and Q-R mixing in the same vibrational band. The pressure shifting coefficient of the 0310 ← 0110 Q branch as a whole was also determined and found to be 5.8 × 10−3 cm−1/atm towards lower frequencies.  相似文献   

9.
10.
Line positions and strengths of 16O12C18O (628), 18O12C18O (828) and 17O12C18O (728) were measured between 2200 and 7000 cm−1 using 22 near infrared (NIR) absorption spectra recorded at 0.01-0.013 cm−1 resolution with the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak, Arizona. These data were obtained at room temperature using absorption cells with optical path lengths ranging from 2.4 to 385 m; the cells were filled with natural and 18O-enriched samples of CO2 at pressures ranging from 0.54 to 252 torr. The observed line positions were analyzed to obtain the upper state band centers and rotational constants for 17 bands of 16O12C18O, 19 bands of 18O12C18O and 8 bands of 17O12C18O. The majority of the 18O12C18O and 17O12C18O bands were measured for the first time. In addition, the rotational constants for the lower states 00001, 01101e and 01101f were derived for all three species using the method of combination differences in which the averaged values obtained from the line positions of two or more bands were least-squares-fitted. Rovibrational parameters were also obtained for the 02201e, 02201f, 10002 and 10001 states of 18O12C18O. The line position analysis revealed that transitions of the levels 38 ? J′ ? 46 of the 11111f ← 01101f band of 18O12C18O are perturbed. Perturbed transitions were also observed for the 12212 ← 02201 band and in the high-J transitions (J′ ? 49) of the 20012 ← 00001 band of 18O12C18O. Band strengths and Herman-Wallis-like F-factor coefficients were determined for 21 bands of 16O12C18O, 25 bands of 18O12C18O and 8 bands of 17O12C18O from least-squares fits to more than 3700 measured transition intensities; band strengths and line positions for 34 of these bands were obtained for the first time.  相似文献   

11.
The absorption spectrum of the 18O enriched carbon dioxide has been recorded at Doppler limited resolution with a Fourier transform spectrometer in the spectral range 3800-8500 cm−1. Seventeen cold bands (14Σ-Σ and 3Σ-Π) and nine hot bands (9Π-Π) of 12C18O2, nineteen cold bands (18Σ-Σ and 1Σ-Π) and eighteen hot bands (6Σ-Σ, 9Π-Π and 3Δ-Δ) of 16O12C18O have been observed. Among them, 14 12C18O2 bands and 12 16O12C18O bands are observed for the first time. The spectroscopic parameters Gv, Bv, and centrifugal distortion constants, have been determined for all observed bands. Effective Hamiltonian parameters for the 12C18O2 isotopic species are retrieved from the global fitting of the observed line positions presented in this paper and collected from the literature. As the result, 65 obtained effective Hamiltonian parameters reproduce 5443 observed line positions of 73 12C18O2 bands with RMS = 0.00145 cm−1.  相似文献   

12.
Room temperature values for self-broadened and hydrogen-broadened Lorentz halfwidth coefficients, and self and hydrogen pressure-induced shift coefficients have been measured for transitions with rotational quantum number m ranging between −24 and 24 in the 2 ← 0 band of 12C16O. The spectra were recorded with the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak. The analysis was performed using a multispectrum nonlinear least squares technique. We have compared our results with similar measurements published recently.  相似文献   

13.
Atmospheric carbon dioxide is a key specie for the Earth climate. Two spectral windows at 1.6 μm and 2.0 μm are of particular interest for the in situ and remote monitoring of carbon dioxide from satellite, balloon or airborne platforms using infrared absorption spectroscopy. A precise knowledge of the line strengths is a prerequisite for an accurate concentration retrieval. In this paper, we have revisited in the laboratory the (3001)III←(0000) and (3001)II ← (0000) bands of CO2 near 1.6 μm and the (2001)III ← (0000) and (2001)II ← (0000) bands near 2.0 μm by implementing both a high-resolution Connes-type Fourier-transform spectrometer and a tunable diode laser spectrometer equipped with several telecommunication-type semiconductor laser devices. Approximately 200 (respectively 18) transitions of CO2 have been carefully investigated in spectra recorded with the FT spectrometer (respectively with the tunable diode laser spectrometer). The intensity measurements achieved with both instruments are thoroughly compared to previous instrumental determinations, ab-initio calculations and available atmospheric molecular database.  相似文献   

14.
Intensity and line shape parameters which predict spectral lines with absolute accuracies better than 0.3% have been determined for transitions of the 30012 ← 00001 band of 16O12C16O centered near 6348 cm−1 from 26 high resolution, high signal-to-noise ratio spectra recorded at room temperature with the McMath-Pierce Fourier transform spectrometer. To maximize the accuracies of the retrieved parameters, the multispectrum non-linear least squares retrieval technique was modified to adjust the rovibrational constants (G, B, D, etc.) and intensity parameters, including Herman-Wallis terms, rather than retrieving the individual positions and intensities. Speed-dependent Voigt line shapes with line mixing were required to remove systematic errors in the fit residuals. Self- and air-broadening (widths and pressure-induced shifts, speed dependence parameters) and line mixing (off-diagonal relaxation matrix elements) coefficients were thus obtained in the multispectrum fit. Remaining errors were minimized by fitting the weak 30011 ← 00001 band of 16O13C16O as well as the weak hot bands 31112 ← 01101, 32212 ← 02201, 40012 ← 10001, and 40013 ← 10002 of 16O12C16O that contribute interfering absorptions in this spectral window. This study presents the most extensive set of measurements to date for self- and air-broadening and self- and air-shift coefficients of a near infrared band of CO2. This is also the first study where line mixing parameters have been experimentally determined for any parallel CO2 band.  相似文献   

15.
The McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory (NSO) on Kitt Peak, Arizona, was used to record infrared high resolution absorption spectra of CO2 spectra broadened by O2. These spectra were analyzed to measure O2-broadened half-width coefficients, O2-induced pressure-shift coefficients and speed dependent parameters for transitions in the 30013←00001 and 30012←00001 bands of 16O12C16O located near 6227 and 6348 cm−1, respectively. All spectra were obtained at room temperature using the long path, 6 m base path White cell available at NSO. A multispectrum nonlinear least-squares fitting algorithm employing Voigt line shapes modified to include line mixing and speed dependence was used to fit simultaneously a total of 19 spectra in the 6120-6280 cm−1 (30013←00001) and 6280-6395 cm−1 (30012←00001) spectral regions. 16 of the 19 spectra analyzed in this work were self broadened and three spectra were lean mixtures of CO2 in O2. The volume mixing ratios of CO2 in the three spectra varied between 0.06 and 0.1. Lorentz half-width and pressure-induced shift coefficients were measured for all transitions in the P(50)-R(50) range in both vibrational bands. The results obtained from present analysis have been compared with measurements available in the literature for self-, air-, oxygen- and argon-broadening. No significant differences were observed between the broadening and shift coefficients of the two bands. The N2-broadened half-width and pressure-shift coefficients were computed from measured air- and O2-broadened width and shift coefficients.  相似文献   

16.
Pressure broadened (1 atm. N2) laboratory spectra of benzene vapor (in natural abundance) were recorded at 278, 298, and 323 K, covering 600-6500 cm−1. The spectra were recorded at a resolution of 0.112 cm−1 using a commercial Fourier transform spectrometer. The pressure of each benzene vapor sample was measured using high-precision capacitance manometers, and a minimum of nine sample pressures were recorded for each temperature. The samples were introduced into a temperature-stabilized static cell (19.94(1) cm pathlength) that was hard-mounted into the spectrometer. From these data a fit composite spectrum was calculated for each temperature. The number density for the three composite spectra was normalized to 296 K. The spectra give the absorption coefficient (cm2 molecule−1, naperian units) as a function of wavenumber. From these spectra integrated band intensities (cm molecule−1 and atm−1 cm−2) for intervals corresponding to the stronger benzene bands were calculated and were compared with previously reported values. We discuss and quantify error sources and estimate our systematic (NIST Type-B) errors to be 3% for the stronger bands. The measured absorption coefficients and integrated band intensities are useful for remote sensing applications such as measurements of planetary atmospheres and assessment of the environmental impact of terrestrial oil fire emissions.  相似文献   

17.
The high-resolution Fourier transform absorption spectrum of an isotopic sample of nitrogen dioxide, 15N16O2, was recorded in the 3.4 μm region. Starting from the results of a previous study [Y. Hamada, J. Mol. Struct. 242 (1991) 367-377] a new analysis of the ν1 + ν3 band located at 2858.7077 cm−1 has been performed. This new assignment concerns (1 0 1) energy levels involving rotational quantum numbers up to Ka = 10 and N = 54. Using a theoretical model which accounts for both the electron spin-rotation resonances within each vibrational state and the Coriolis interactions between the (1 2 0) and (1 0 1) vibrational states, the spin-rotation energy levels of the (1 0 1) vibrational state could be reproduced within their experimental uncertainty. In this way, the precise vibrational energy, rotational, spin-rotation, and coupling constants were achieved for the {(1 2 0), (1 0 1)} interacting states of 15N16O2. Using these parameters and the transition moment operator which was obtained for the main isotopic species, 14N16O2, a comprehensive list of the line positions and intensities was generated for the ν1 + ν3 band of 15N16O2.  相似文献   

18.
High-resolution Fourier-transform absorption spectra of nitrous acid (HONO) were recorded in the 400-700 cm−1 spectral region. For the trans-HONO isomer a very extensive analysis of the ν5 (ONO bend) and ν6 (torsion) interacting fundamental bands of trans-HONO located near 595.620 and 543.879 cm−1, respectively, was performed starting from the results of a previous study [C.M. Deeley, I.M. Mills, L.O. Halonen, J. Kauppinen, Can. J. Phys. 63 (1985) 962-965]. In addition, for the less abundant cis-HONO isomer, the first high-resolution study of the ν6 band located at 639.7432 cm−1 was achieved, the ν5 band is presumed to be located near 609.2 cm−1. For both isomers the strong A-type and B-type Coriolis interactions linking the {51, 61} interacting energy levels were accounted for during the energy level calculations. Finally, using these results a list of positions and of realistic relative line intensities has been generated for both isomers, and a comparison with some ab initio predictions was performed.  相似文献   

19.
The exhaustive line positions analysis of the absorption spectrum of carbon dioxide in natural abundance has been performed on the basis of high sensitivity CW-Cavity Ring Down spectroscopy between 5851 and 7045 cm−1 (1.71-1.42 μm). The achieved sensitivity (noise equivalent absorption αmin ∼ 2-5 × 10−10 cm−1) have allowed the detection of 8293 transitions of the 12C16O2, 16O12C17O and 16O12C18O isotopologues. They belong to a total of 130 bands. Line intensities of the weakest transitions are on the order of 2 × 10−29 cm/molecule. The rovibrational assignments were performed on the basis of accurate predictions of the effective Hamiltonian model of the respective isotopologues. The band-by-band analysis has allowed deriving accurate spectroscopic parameters of 121 bands from a fit of the measured line positions. A number of resonance interactions were identified. In particular, the first observation of an interpolyad coupling is reported for the 16O12C18O isotopologue. The results of the complete line positions analysis are provided as Supplementary material.The obtained experimental dataset which is the most complete in the considered region, has been used for a critical review of the most currently used spectroscopic databases of carbon dioxide: HITRAN, GEISA, HITEMP, and the recent JPL and CDSD databases.  相似文献   

20.
[Ba(H2O)3](ClO4)2 between 90 and 300 K possesses two solid phases. One phase transition of the first‐order type at: = 211.3 K (on heating) and = 204.6 K (on cooling) was determined by differential scanning calorimetry. The entropy change value (ΔS ≈ 15 Jmol–1 K–1), associated with the observed phase transition, indicates a moderate degree of molecular dynamical disorder. Both, vibrational and reorientational motions of H2O ligands and ClO4 anions, in the high‐temperature and low‐temperature phases, were investigated by Fourier transform far‐infrared and middle‐infrared and Raman light scattering spectroscopies. The temperature dependences of the full‐width at half‐maximum values of the bands associated with ρw(H2O) mode, in both infrared (~570 cm–1) and Raman light scattering (~535 cm–1) spectra, suggest that the observed phase transition is not associated with a sudden change of a speed of the H2O reorientational motions. Ligands reorient fast, with correlation time of the order of several picoseconds, with a mean activation energy value Ea = 5.1 kJ mol–1 in both high and low temperature phases. On the other hand, measurements of temperature dependences of full‐width at half‐maximum values of the infrared band at ~460 cm–1, associated with δd(OClO)E mode, and Raman band at ~1105 cm–1, associated with νas(ClO)F2 mode, revealed the existence of a fast ClO4 reorientation in phase I and in phase II, with the Ea(I) and Ea(II) values equal to 8.0 and 6.5 kJ mol–1, respectively. These reorientational motions of ClO4 are slightly distorted at the TC. Fourier transform far‐infrared and middle‐infrared spectra with decreasing of temperature indicated characteristic changes at the vicinity of PT at TC, which suggested lowering of the crystal structure symmetry. All these experimental facts suggest that the discovered phase transition is associated with small change of H2O ligands and somewhat major change of ClO4 anions reorientational dynamics, and with insignificant change of the crystal structure, too. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号