首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourier transform infrared spectroscopy of \(\hbox {CH}_{4}/\hbox {N}_{2}\) and \(\hbox {C}_{2}\hbox {H}_{m}/\hbox {N}_2\) ( \(m = 2, 4, 6\) ) gas mixtures in a medium pressure (300 mbar) dielectric barrier discharge was performed. Consumption of the initial gas and formation of other hydrocarbon and of nitrogen-containing HCN and \(\hbox {NH}_{3}\) molecules was observed. \(\hbox {NH}_{3}\) formation was further confirmed by laser absorption measurements. The experimental result for \(\hbox {NH}_{3}\) is at variance with simulation results.  相似文献   

2.
Quantitative structure-property relationship for the thermal decomposition of polymers is suggested. The data on architecture of monomers is used to represent polymers. The structures of monomers are represented by simplified molecular input-line entry system. The average statistical quality of the suggested quantitative structure-property relationships for prediction of molar thermal decomposition function $\hbox {Y}_{\mathrm{d},1/2}$ is the following: $\hbox {r}^{2}=0.970 \pm 0.01$ and $\hbox {RMSE}=4.71\pm 1.01\,(\hbox {K}\times \hbox {kg}\times \hbox {mol}^{-1})$ .  相似文献   

3.
A three-step method to determine the eutectic composition of a binary or ternary mixture is introduced. The method consists in creating a temperature–composition diagram, validating the predicted eutectic composition via differential scanning calorimetry and subsequent T-History measurements. To test the three-step method, we use two novel eutectic phase change materials based on \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\mathrm O}\) and \(\mathrm{NH}_4\mathrm{NO}_3\)   respectively \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\hbox {O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) with equilibrium liquidus temperatures of 12.4 and 3.9  \(\,^{\circ }\mathrm {C}\) respectively with corresponding melting enthalpies of 135 J \(\mathrm{g}^{-1}\) (237 J \(\mathrm{cm}^{-3}\) ) respectively 133 J \(\mathrm{g}^{-1}\) (225 J \(\mathrm{cm}^{-3}\) ). We find eutectic compositions of 75/25 mass% for \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) and 73/27 mass% for \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot 6\mathrm{H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) . Considering a temperature range of 15 K around the phase change, a maximum storage capacity of about 172 J \(\mathrm{g}^{-1}\) (302 J \(\mathrm{cm}^{-3}\) ) respectively 162 J \(\mathrm{g}^{-1}\) (274 J \(\mathrm{cm}^{-3}\) ) was determined for \(\mathrm{Zn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) respectively \(\mathrm{Mn}(\hbox {NO}_3)_2\cdot \mathrm{6H}_{2}{\mathrm{O}}\) and \(\mathrm{NH}_4\mathrm{NO}_3\) .  相似文献   

4.
The effects of adding an antagonistic salt, sodium tetraphenylborate ( \(\hbox {NaBPh}_4\) ), to a binary mixture of deuterated water and 2,6-dimethylpyridine were investigated by visual inspection, optical microscopy, and small-angle neutron scattering. With increasing salt concentration, the two-phase region shrinks. When the concentration of \(\hbox {NaBPh}_4\) is \(85\hbox { mmol}{\cdot} \hbox {L}^{-1}\) , a temperature-induced lamellar/disorder phase transition is observed at 338 K. These trends are similar to those observed for a mixture of water/3-methylpyridine/ \(\hbox {NaBPh}_4\) (Sadakane et al., Phys. Rev. Lett. 103, 167803 (2009)).  相似文献   

5.
After the RS-stereoisomeric group \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}\) of order 16 has been defined by starting point group \(\mathbf{D}_{2d}\) of order 8, the isomorphism between \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}\) and the point group \(\mathbf{D}_{4h}\) of order 16 is thoroughly discussed. The non-redundant set of subgroups (SSG) of \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}\) is obtained by referring to the non-redundant set of subgroups of \(\mathbf{D}_{4h}\) . The coset representation for characterizing the orbit of the four positions of an allene skeleton is clarified to be \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}(/\mathbf{C}_{s\widetilde{\sigma }\widehat{I}})\) , which is closely related to the \(\mathbf{D}_{4h}(/\mathbf{C}_{2v}^{\prime \prime \prime })\) . According to the unit-subduced-cycle-index (USCI) approach (Fujita, Symmetry and combinatorial enumeration of chemistry. Springer, Berlin 1991), the subduction of \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}(/\mathbf{C}_{s\widetilde{\sigma }\widehat{I}})\) is examined so as to generate unit subduced cycle indices with chirality fittingness (USCI-CFs). Then, the fixed-point matrix method of the USCI approach is applied to the USCI-CFs. Thereby, the numbers of quadruplets are calculated in an itemized fashion with respect to the subgroups of \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}\) . After the subgroups of \(\mathbf{D}_{2d\widetilde{\sigma }\widehat{I}}\) are categorized into types I–V, type-itemized enumeration of quadruplets is conducted to illustrate the versatility of the stereoisogram approach.  相似文献   

6.
We consider the following system coming from a lattice dynamical system stated by Kaneko (Phys Rev Lett, 65:1391–1394, 1990) which is related to the Belusov–Zhabotinskii reaction: $$\begin{aligned} x_{n}^{m+1}=(1-\varepsilon )f\left( x_{n}^{m}\right) +\frac{1}{2}\varepsilon \left[ f(x_{n-1}^{m})+f\left( x_{n+1}^{m}\right) \right] , \end{aligned}$$ where $m$ is discrete time index, $n$ is lattice side index with system size $L$ (i.e., $n=1, 2, \ldots , L$ ), $\varepsilon \ge 0$ is coupling constant, and $f(x)$ is the unimodal map on $I$ (i.e., $f(0)=f(1)=0$ , and $f$ has unique critical point $c$ with $0<c<1$ and $f(c)=1$ ). In this paper, we prove that for coupling constant $\varepsilon =1$ , this CML (Coupled Map Lattice) system is distributionally $(p, q)$ -chaotic for any $p, q\in [0, 1]$ with $p\le q$ , and that its principal measure is not less than $\mu _{p}(f)$ . Consequently, the principal measure of this system is not less than $\frac{2}{3}+\sum _{n=2}^{\infty }\frac{1}{n}\frac{2^{n-1}}{(2^{n}+1) (2^{n-1}+1)}$ for coupling constant $\varepsilon =1$ and the tent map $\Lambda $ defined by $\Lambda (x)=1-|1-2x|, x\in [0, 1]$ . So, our results complement the results of Wu and Zhu (J Math Chem, 50:2439–2445, 2012).  相似文献   

7.
García Guirao and Lampart in (J Math Chem 48:159–164, 2010) presented a lattice dynamical system stated by Kaneko in (Phys Rev Lett 65:1391–1394, 1990) which is related to the Belusov–Zhabotinskii reaction. In this paper, we prove that for any non-zero coupling constant $\varepsilon \in (0, 1)$ , this coupled map lattice system is distributionally $(p, q)$ -chaotic for any pair $0\le p\le q\le 1$ , and that its principal measure is not less than $(1-\varepsilon )\mu _{p}(f)$ . Consequently, the principal measure of this system is not less than $$\begin{aligned} (1-\varepsilon )\left( \frac{2}{3}+\sum \limits _{n=2}^{\infty }\frac{1}{n}\frac{2^{n-1}}{(2^{n}+1) (2^{n-1}+1)}\right) \end{aligned}$$ for any non-zero coupling constant $\varepsilon \in (0, 1)$ and the tent map $\Lambda $ defined by $$\begin{aligned} \Lambda (x)=1-|1-2x|,\quad x\in [0, 1]. \end{aligned}$$   相似文献   

8.
Complete active space self-consistent field and second-order multiconfigurational perturbation theory methods have been performed to investigate the quartet excited state ${\tilde{a}}^{4}{A^{\prime\prime}}$ potential energy surface of HCNN radical. Two located minima with respective cis and trans structures could easily dissociate to CH $({\tilde{a}}^{4}\Sigma^{-})$ and $N_{2} ({\tilde{X}}^{1}\Sigma_{\rm g}^{+})$ products with similar barrier of about 16.0 kcal/mol. In addition, four minimum energy crossing points on a surface of intersection between ${\tilde{a}}^{4}A^{\prime\prime}$ and X ( $X={\tilde{X}}^{2}A^{\prime\prime}$ and ${\tilde{A}}^{2}A^{\prime}$ ) states are located near to the minima. However, the intersystem crossing ${\tilde{a}}^{4}A^{\prime\prime} \rightarrow X$ is weak due to the vanishingly small spin–orbit interactions. It further indicates that the direct dissociation on the ${\tilde{a}}^{4}{A^{\prime\prime}}$ state is more favored. This information combined with the comparison with isoelectronic HCCO provides an indirect support to the recent experimental proposal of photodissociation mechanism of HCNN.  相似文献   

9.
The acid?Cbase behavior of $\mathrm{Fe}(\mathrm{CN})_{6}^{4-}$ was investigated by measuring the formal potentials of the $\mathrm{Fe}(\mathrm{CN})_{6}^{3-}$ / $\mathrm{Fe}(\mathrm{CN})_{6}^{4-}$ couple over a wide range of acidic and neutral solution compositions. The experimental data were fitted to a model taking into account the protonated forms of $\mathrm{Fe}(\mathrm{CN})_{6}^{4-}$ and using values of the activities of species in solution, calculated with a simple solution model and a series of binary data available in the literature. The fitting needed to take account of the protonated species $\mathrm{HFe}(\mathrm{CN})_{6}^{3-}$ and $\mathrm{H}_{2}\mathrm{Fe}(\mathrm{CN})_{6}^{2-}$ , already described in the literature, but also the species $\mathrm{H}_{3}\mathrm{Fe}(\mathrm{CN})_{6}^{-}$ (associated with the acid?Cbase equilibrium $\mathrm{H}_{3}\mathrm{Fe}(\mathrm{CN})_{6}^{-}\rightleftharpoons \mathrm{H}_{2}\mathrm{Fe}(\mathrm{CN})_{6}^{2-} + \mathrm{H}^{+}$ ). The acidic dissociation constants of $\mathrm{HFe}(\mathrm{CN})_{6}^{3-}$ , $\mathrm{H}_{2}\mathrm{Fe}(\mathrm{CN})_{6}^{2-}$ and $\mathrm{H}_{3}\mathrm{Fe}(\mathrm{CN})_{6}^{-}$ were found to be $\mathrm{p}K^{\mathrm{II}}_{1}= 3.9\pm0.1$ , $\mathrm{p}K^{\mathrm{II}}_{2} = 2.0\pm0.1$ , and $\mathrm{p}K^{\mathrm{II}}_{3} = 0.0\pm0.1$ , respectively. These constants were determined by taking into account that the activities of the species are independent of the ionic strength.  相似文献   

10.
Treatment of the electronically unsaturated 4-methylquinoline triosmium cluster $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu_3\hbox{-}\upeta^{2}\hbox{-}\hbox{C}_{9}\hbox{H}_{5} \hbox{(4-Me)N})(\upmu\hbox{-H})]$ (1) with tetramethylthiourea in refluxing cyclohexane at 81°C gave $[\hbox{Os}_{3}\hbox{(CO)}_{8}(\upmu\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{5} \hbox{(4-Me)N})(\upeta^2\hbox{-SC}(\hbox{NMe}_2\hbox{NCH}_2\hbox{Me})(\upmu \hbox{-H})_2]$ (2) and $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{5}\hbox{(4-Me)N})(\upeta^1\hbox{-SC}(\hbox{NMe}_2)_2)(\upmu\hbox{-H})]$ (3). In contrast, a similar reaction of the corresponding quinoline compound $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu_{3}\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{6}\hbox{N})(\upmu\hbox{-H})]$ (4) with tetramethylthiourea afforded $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{6}\hbox{N})(\upeta^{1}\hbox{-SC(NMe}_{2})_{2})(\upmu\hbox{-H)}]$ (5) as the only product. Compound 2 contains a cyclometallated tetramethylthiourea ligand which is chelating at the rear osmium atom and a quinolyl ligand coordinated to the Os3 triangle via the nitrogen lone pair and the C(8) atom of the carbocyclic ring. In 3 and 5, the tetramethylthiourea ligand is coordinated at an equatorial site of the osmium atom, which is also bound to the carbon atom of the quinolyl ligand. Compounds 3 and 5 react with PPh3 at room temperature to give the previously reported phosphine substituted products $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu \hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{5}\hbox{(4-Me)N)(PPh}_{3})(\upmu\hbox{-H)}]$ (6) and $[\hbox{Os}_{3}\hbox{(CO}_{9}(\upmu \hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{6}\hbox{N)(PPh}_{3})(\upmu\hbox{-H)}]$ (7) by the displacement of the tetramethylthiourea ligand.  相似文献   

11.
The intermediate and LS-coupling schemes for the free lanthanide ions $\text{ Pr }^{3+}$ Pr 3 + and $\text{ Tm }^{3+}$ Tm 3 + have been compared by the matrix elements of the tensor operator ${{\varvec{U}}}^{({\varvec{k}})}, \text{ k } = 2, 4, 6$ U ( k ) , k = 2 , 4 , 6 . The necessary eigenvectors and eigenvalues have been computed with the aid of four parameters, $\text{ F }_{2}, \text{ F }_{4}, \text{ F }_{6}$ F 2 , F 4 , F 6 , and $\zeta _{4\mathrm{f}}$ ζ 4 f , known from free-ion spectra of the same ions. It has been found that both coupling types for each ion lead to close values of ${\vert }{{\varvec{U}}}^{({\varvec{k}})}{\vert }^{2}$ | U ( k ) | 2 only for transitions from the ground level to certain lower-lying energy levels within the $4\text{ f }^\mathrm{N}$ 4 f N configuration.  相似文献   

12.
The symmetry-itemized enumeration of quadruplets of stereoisograms is discussed by starting from a tetrahedral skeleton, where the partial-cycle-index (PCI) method of the unit-subduced-cycle-index approach (Fujita in Symmetry and combinatorial enumeration of chemistry. Springer, Berlin, 1991) is combined with the stereoisogram approach (Fujita in J Org Chem 69:3158–3165, 2004, Tetrahedron 60:11629–11638, 2004). Such a tetrahedral skeleton as contained in the quadruplet of a stereoisogram belongs to an RS-stereoisomeric group denoted by $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}$ , where the four positions of the tetrahedral skeleton accommodate achiral and chiral proligands to give quadruplets belonging to subgroups of $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}$ according to the stereoisogram approach. The numbers of quadruplets are calculated as generating functions by applying the PCI method. They are itemized in terms of subgroups of $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}$ , which are further categorized into five types. Quadruples for stereoisograms of types I–V are ascribed to subgroups of $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}$ , where their features are discussed in comparison between RS-stereoisomeric groups and point groups.  相似文献   

13.
The reaction quotient Q can be expressed in partial pressures as $\hbox {Q}_\mathrm{P}$ or in mole fractions as $\hbox {Q}_{\mathrm{x}}$ . $\hbox {Q}_\mathrm{P}$ is ostensibly more useful than $\hbox {Q}_{\mathrm{x}}$ because the related $\hbox {K}_{\mathrm{x}}$ is a constant for a chemical equilibrium in which T and P are kept constant while $\hbox {K}_{\mathrm{P}}$ is an equilibrium constant under more general conditions in which only T is constant. However, as demonstrated in this work, $\hbox {Q}_{\mathrm{x}}$ is in fact more important both theoretically and technically. The relationships between $\hbox {Q}_{\mathrm{x}}$ , $\hbox {Q}_\mathrm{P}$ , and $\hbox {Q}_{\mathrm{C}}$ are discussed. Four examples of applications are given in detail.  相似文献   

14.
The coefficients \(c_{k}\) (k = 2, 4, 6) that pertain to spin-correlated matrix elements of the tensor operator \({{\varvec{U}}}^{{\varvec{(k)}}}\) have been evaluated by means of the differences \({{\varvec{U}}}^{{\varvec{(k)}}}\) (intermediate) \(-\) \({{\varvec{U}}}^{{\varvec{(k)}}}\) (LS) and the reduced matrix elements of the operator \({{\varvec{V}}}^{{\varvec{(1k)}}}\) . Only spin-allowed transitions have been considered from each ground level to the excited energy levels within the \(4\hbox {f}^{2}\) and \(4\hbox {f}^{12}\) configurations of the free ions Pr (3+) and Tm (3+), respectively. The values of the coefficients \(c_{k}\) thus found correspond in most cases by sign and order of magnitude to those determined in other sources as corrections to lanthanide (3+) crystal-field parameters.  相似文献   

15.
The structure and the stability of pentazolide compounds $\hbox{A}_{\it n}(\hbox{N}_5)_{\rm 6-{\it n}}^{\it q}$ (A = B, Al, Si, P, and S; n= 1–3; q = +1, 0, ?1, ?2, and ?3), as high energy-density materials (HEDMs), have been investigated at the B3LYP/6-311+G* level of theory. The natural bond orbital analysis shows that the charge transfer plays an important role when the $\hbox{A}_{\it n}(\hbox{N}_5)_{\rm 6-{\it n}}^{\it q}$ species are decomposed to $\hbox{A}_{\it n}(\hbox{N}_5)_{\rm 5-{\it n}}\hbox{N}_3^{\it q}$ and N2. The more negative charges are transferred from the N2 molecule after breaking the N5 ring, the more stable the systems are with respect to the decomposition. Moreover, the conclusion can be drawn that ${\hbox{Al}(\hbox{N}_5)_5^{2-}}$ and ${\hbox{Al}_2(\hbox{N}_5)_4^{2-}}$ are predicted to be suitable as potential HEDMs.  相似文献   

16.
The RS-stereoisomeric group $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}$ is examined to characterize quadruplets of RS-stereoisomers based on a tetrahedral skeleton and found to be isomorphic to the point group $\mathbf{O}_{h}$ of order 48. The non-redundant set of subgroups (SSG) of $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}$ is obtained by referring to the non-redundant SSG of $\mathbf{O}_{h}$ . The coset representation for characterizing the orbit of the four positions of the tetrahedral skeleton is clarified to be $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}(/\mathbf{C}_{3v\widetilde{\sigma }\widehat{I}})$ , which is closely related to the $\mathbf{O}_{h}(/\mathbf{D}_{3d})$ . According to the unit-subduced-cycle-index (USCI) approach (Fujita in Symmetry and combinatorial enumeration in chemistry. Springer, Berlin, 1991), the subdution of $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}(/\mathbf{C}_{3v\widetilde{\sigma }\widehat{I}})$ is examined so as to generate unit subduced cycle indices with chirality fittingness (USCI-CFs). The fixed-point matrix method of the USCI approach is applied to the USCI-CFs. Thereby, the numbers of quadruplets are calculated in an itemized fashion with respect to the subgroups of $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}$ . After the subgroups of $\mathbf{T}_{d\widetilde{\sigma }\widehat{I}}$ are categorized into types I–V, type-itemized enumeration of quadruplets is conducted to illustrate the versatility of the stereoisogram approach.  相似文献   

17.
18.
Enumeration of molecules is one of the fundamental problems in bioinformatics and chemoinformatics which is also important from a practical viewpoint. We consider the problem of enumerating the stereo-isomers of tree-like polyinositol molecules (with chemical formula $\hbox {C}_{6n}\hbox {O}_{5n+6}\hbox {H}_{4n+2}$ where $n$ is the number of hexagonal oinositol rings) and monosubstituted tree-like polyinositols (with chemical formula $\hbox {C}_{6n}\hbox {O}_{5n+6}\hbox {H}_{4n+1}\hbox {Z}$ ). We establish recursion counting formulas for the numbers of the stereo-isomers for these two classes of molecules, in which chirality is also taken into account. In our study, the generating function, Pólya enumeration theory and ‘Dissimilarity Characteristic Theorem’ play important roles. Compared to some known computer programs such as ISOMERS, MOLGEN, exhaustive construction and Dynamic Programming etc., our method is more efficient to our enumeration problem with larger number of inositol rings. Further more, based on the obtained recursion formulas, we derive the asymptotic values for the numbers of these two stereo-isomers from which we conclude that almost all tree-like and monosubstituted tree-like polyinositols are chiral.  相似文献   

19.
This paper is concerned with the following system which comes from a lattice dynamical system stated by Kaneko in (Phys Rev Lett 65:1391–1394, 1990) and is related to the Belusov–Zhabotinskii reaction: $$\begin{aligned} x_{n}^{m+1}=(1-\varepsilon )f(x_{n}^{m})+\frac{1}{2}\varepsilon \left[ f(x_{n-1}^{m})+f(x_{n+1}^{m})\right] , \end{aligned}$$ x n m + 1 = ( 1 ? ε ) f ( x n m ) + 1 2 ε [ f ( x n ? 1 m ) + f ( x n + 1 m ) ] , where $m$ m is discrete time index, $n$ n is lattice side index with system size $L$ L (i.e., $n=1, 2, \ldots , L$ n = 1 , 2 , … , L ), $\varepsilon $ ε is coupling constant, and $f(x)$ f ( x ) is the unimodal map on $I$ I (i.e., $f(0)=f(1)=0$ f ( 0 ) = f ( 1 ) = 0 and $f$ f has unique critical point $c$ c with $0<c<1$ 0 < c < 1 and $f(c)=1$ f ( c ) = 1 ). It is proved that for coupling constant $\varepsilon =1$ ε = 1 , this CML (Coupled Map Lattice) system is chaotic in the sense of Li–Yorke for each unimodal selfmap on the interval $I=[0, 1]$ I = [ 0 , 1 ] .  相似文献   

20.
García Guirao and Lampart (J Math Chem 48:66–71, 2010; J Math Chem 2 48:159–164, 2010) said that for non-zero couplings constant, the lattice dynamical system is more complicated. Motivated by this, in this paper, we prove that this coupled lattice system is distributionally (p, q)-chaotic for any pair 0?≤ p?≤ q?≤ 1 and its principal measure is not less than ${\frac{2}{3} + \sum_{n=2}^{\infty} \frac{1}{n} \frac{2^{n-1}}{(2^{n}+1)(2^{n-1}+1)}}$ for coupling constant ${0 < \epsilon < 1}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号