首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of the adsorption behavior of surfac-which makes people further study the adsorptiontants to interfaces is very important in colloid and in-mechanism at the molecular level.terface science[1]owing to the important applications In situ AFM measur…  相似文献   

2.
Li insertion–deinsertion into composite graphite electrodes, comprising synthetic graphite flakes (6 μm average size), polyvinylidene difluoride binder (PVdF), and copper current collectors, in commonly used alkyl carbonate solutions were studied by in situ atomic force microscopy (AFM). In this study, we were able to probe by in situ AFM the behavior of practical, composite graphite electrodes in ethylene carbonate–dimethyl carbonate (EC–DMC) solutions containing salts such as LiAsF6 and LiPF6 during entire lithiation–delithiation cycles. These in situ micro/nanomorphological studies could probe surface film formation on the graphite particles, as well as periodic volume changes in the graphite flakes during Li insertion–deinsertion cycles. These cyclic volume changes can explain the capacity fading of graphite electrodes upon prolonged cycling, in Li-ion batteries. While the overall morphology of these electrodes remains steady upon cycling in the appropriate solutions (in which the Li–C electrodes are efficiently passivated), there is a continuous problem in the extent of accommodation of the small volume changes in the graphite particles upon lithiation–delithiation, by the surface films. It is suggested that graphite electrodes fail during prolonged cycling due to small scale, continuous reactions of the active mass with solution species, which gradually increase their impedance and decrease the content of the lithium stored in the electrodes.  相似文献   

3.
Ramneek Kaur 《Liquid crystals》2013,40(8):1065-1072
Langmuir–Blodgett films of ferroelectric liquid crystal (LC) doped with low concentration of single-wall carbon nanotubes have been prepared and characterised. Pressure–area isotherms show that the films are stable and have good spreading properties. The interaction between nanotubes and LC molecules in the monolayer was increased during barrier compression, resulting in increased surface pressure. We observed phase change with increasing nanotube concentration in ferroelectric LC matrix. Atomic force microscopy profiles indicate uniform deposition of material on single crystal silicon wafer.  相似文献   

4.
《Supramolecular Science》1998,5(5-6):549-552
Alternate films, which are composed of stearic acid and CdS nanoparticles were synthesized by exposing Langmuir–Blodgett (LB) films of cadmium stearate (CdSt2) to H2S gas at a pressure of 1 Torr. The changes of surface morphology of film with the increased reaction time were directly observed by atomic force microscopy for the first time. Before being exposed to H2S, the surface of CdSt2 LB film was homogeneous from microscale down to nanoscale, and it was observed that CdSt2 molecules formed a well orderly rectangular herringbone lattice structure on the molecular scale. However, after being exposed to H2S the ordered CdSt2 molecules gradually changed into a disordered state, and eventually the LB film surface became rough with the apparent feature of bulk structures on the nanoscale. This change in the morphology can be attributed to the aggregation of buried CdS nanoparticles within LB films, which has been confirmed by a structured UV–visible absorption spectrum where the absorption edge is red-shifted about 0.7 eV with respect to bulk CdS. Finally, the aggregation mechanism of CdS in the LB film was analyzed.  相似文献   

5.
This work compares the performance of dispersive liquid–liquid method (DLLME) as a prior step for determining copper by flame atomic absorption spectrometry (FAAS), when using the ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate (C4MIm-PF6) or the IL-based surfactant 1-hexadecyl-3-butylimidazolium bromide (C16C4Im-Br) as extractant solvents. For the water-insoluble C4MIm-PF6, the most conventional DLLME mode using acetonitrile as dispersive solvent was employed. For the water-soluble C16C4Im-Br, the in situ DLLME mode with lithium bis[(trifluoromethane)sulfonyl]imide (Li-NTf2) as metathesis reagent was employed. In both approaches, some effective parameters such as volumes of extractant and dispersive solvents, concentration of complexing agent, pH of sample solution, salting-out effect and final diluting solvent to ensure compatibility with FAAS, were properly optimised. The optimum conditions for the IL-DLLME method using C4MIm-PF6 were: 100 μL of neat C4MIm-PF6, 1 mL of acetonitrile, 10 mL of water, no control of pH for environmental waters, NaCl content of 23 g L?1, diethyl dithiocarbamate (DDTC) as complexing agent at 10 mg L?1 and final dilution of the micro-droplet with acetonitrile up to 70 µL. The optimum conditions for the in situ IL-DLLME method using C16C4Im-Br were: 0.8 mL of acetonitrile, 10 mL of water containing C16C4Im-Br at 25.2 mmol L?1, final dilution step of the micro-droplet with 200 µL of acetonitrile and remaining conditions as those of C4MIm-PF6. The analytical performance of both methods was similar, being slightly better for the IL-DLLME method using C4MIm-PF6, with limits of detection (LOD) of 3.3 µg L?1 (versus 5.1 µg L?1 when using C16C4Im-Br), precision values as intraday relative standard deviation (RSD in %) lower than 8.8% (being of 10% for the C16C4Im-Br method) and an enrichment factor of 54 (being 27 when using C16C4Im-Br). The DLLME-FAAS method with C4MIm-PF6 was used in the analysis of environmental waters with successful performance, with relative recoveries of 110% and 105%, and interday precision with RSD values of 21% and 7.4% for spiked levels of 60 and 160 µg L?1, respectively. The results obtained when analysing an urban wastewater sample coming from an inter-laboratory exercise was comparable to those obtained for other 93 laboratories. The method was also valid for the determination of Cu2+ in presence of foreign ions commonly found in natural waters.  相似文献   

6.
Recent reports have indicated higher ionic conductivities in crystalline polymer electrolytes consisting of isostructural P(EO)6:LiX (X=PF6, AsF6, SbF6) phases relative to the analogous amorphous materials. These reports challenge the conventional wisdom in polymer electrolyte research that amorphous electrolytes are much more conductive than crystalline ones. The higher conductivity in the crystalline materials was attributed to the structures in which Li+ cations are located within PEO cylinders uncoordinated by the anions. The conductivity and crystallinity of P(EO)n–LiClO4 (EO/Li=6 and 10) electrolytes have been examined here. In contrast to the recent reports, much lower conductivities are found for the isostructural P(EO)6:LiClO4 crystalline electrolyte relative to the same fully amorphous electrolyte.  相似文献   

7.
8.
To distinguish between Fe(II) and Fe(III) species in atmospheric water samples, we have adapted an analytical procedure based on the formation of a specific complex between Fe(II) and ferrozine (FZ) on a chromatographic column. After elution of Fe(III), the Fe(II) complex is recovered with water–methanol (4:1). The possibility of trace iron measurements in this complex medium by graphite-furnace atomic-absorption spectrometry has been investigated. A simplex optimization routine was required to complete the development of the analytical method.  相似文献   

9.
《Fluid Phase Equilibria》2004,220(1):21-35
An equation of state that can be used for phase equilibrium and other thermodynamic property calculations at high pressures is developed for systems that contain aqueous solutions of strong electrolytes and molecular species. The proposed equation of state is based upon contributions to the Helmholtz free energy from a non-electrolyte term and three electrolyte terms. The non-electrolyte term comes from the Trebble–Bishnoi equation of state and the electrolyte terms consist of a Born energy term, a mean spherical approximation term and a newly developed hydration term. The application of the proposed equation of state to aqueous systems containing mixed salts and mixed solvents is illustrated by calculating the vapour–liquid equilibrium (VLE) and solid (Clathrate hydrate)–vapour–liquid equilibrium (SVLE) conditions for several systems. The solubility of CO2 in salt water systems is examined at elevated pressures. As well, the new equation of state is used in conjunction with the model of van der Waals and Platteeuw to predict the SVLE conditions for gas hydrate forming systems in the presence of single salts, mixed salts and a mixture of aqueous salts and methanol. It is found that the new equation of state is able to accurately represent the experimental data over a wide range of pressure, temperature and salt concentration.  相似文献   

10.
A fully automated method for the determination of chromate is described. It is based on the selective reaction of Cr(VI) with diphenylcarbazide in acidic media to form a colored complex of Cr(III) with the oxidation product diphenylcarbazone. The reaction was performed within the syringe of an automatic burette containing a magnetic stirrer for homogenization of the sample and the required reagents. In-syringe stirring was made possible using a specially designed driving device placed around the syringe barrel to achieve a rotating magnetic field in the syringe, forcing the stirrer to spin. In a second step, the reaction mixture in the syringe was neutralized to allow in-syringe magnetic-stirring-assisted dispersive liquid–liquid microextraction of the complex into 125 μL of n-hexanol. After phase separation by droplet flotation over 30 s, the organic phase was propelled into a coupled spectrophotometric detection cell. The entire multistep procedure including in-system standard preparation was done within 270 s. The method was used for the analysis of natural waters, achieving average analyte recovery of 103 %, a limit of detection of 0.26 μg L-1, and a repeatability of less than 4 % relative standard deviation.  相似文献   

11.
ABSTRACT

Tandem dispersive liquid liquid microextraction coupled with micro - sampling flame atomic absorption spectrometry for rapid determination of lead2 and cadmium2 ions in environmental water samples. A simple method termed as tandem dispersive liquid–liquid microextraction coupled with micro-sampling flame atomic absorption spectrometry is used for determination of the lead(II) and cadmium(II) ions in different environmental water samples. According to the proposed method, the target analytes are extracted from an aqueous sample solution (10 mL) into a micro-volume of an organic solvent, and then they are selectively back-extracted into an aqueous acceptor solution (150 μL) to increase the compatibility of the extractant phase with a final analyser system and provide a suitable enrichment factor. The developed method is very fast, implemented in just about 7 min, and provides a high sample clean-up. The factors influencing the extraction efficiency including the type and volume of the organic solvent, pH and volume of the acceptor solution, and number of extractions are thoroughly examined and optimised. Under the optimal experimental conditions, the developed method provides a good linearity (in the range of 0.4–300 ng mL?1 (R2 ≥ 0.994)), and low limits of detection (in the range of 0.07–0.31 ng mL?1). Finally, the method is successfully applied for the direct determination of the understudied analytes in the river, dam, and well water samples.  相似文献   

12.
A simple, rapid and efficient method has been developed for the extraction, preconcentration and determination of copper, lead and zinc ions in water samples by air-assisted liquid–liquid microextraction coupled with graphite furnace atomic absorption spectrometry (GFAAS). In the proposed method, much less volume of an organic solvent (in the order of some µL) was used as the extraction solvent in the absence of disperser solvent. Fine organic droplets were formed by sucking and injecting of the mixture of aqueous sample solution and extraction solvent with a syringe for several times in a conical test tube. After extraction, phase separation was achieved by centrifugation and the enriched analytes in the sedimented phase were determined by GFAAS. Several variables potentially affecting the extraction efficiency were investigated and optimized. Calibration graphs were linear in the concentration range of 45.0–1100 ng L?1. Detection limits were in the range of 18.0–26.0 ng L?1. The accuracy of the developed procedure was checked by analyzing NRCC-SLRS4 Riverine water as a certified reference material. Finally, the proposed method was successfully applied to determine the selected heavy metals in tap, surface and river water samples.  相似文献   

13.
14.
The thermal decomposition behaviors of styrene?C(ethylene butylene)?Cstyrene (SEBS) thermoplastic elastomer filled with liquid crystalline polymer (LCP), organomontmorillonite (OMMT), and carbon nanotube (CNT) as a heat stabilizing filler, were comparatively investigated using nonisothermal- and isothermal-thermogravimetric analyses in air. The isoconversional method was employed to evaluate the kinetic parameters (E a, lnA, and n) under dynamic heating. For neat samples, OMMT and CNT exhibited their respective lowest and highest thermal stabilities as revealed from the lowest and the highest T onset values, respectively. The decomposition rates of the composites containing OMMT at the temperature >250?°C were higher than those containing CNT and LCP, respectively, whereas the elastomer matrix degraded with the highest rate. The obtained TG profiles and calculated kinetic parameters indicated that the incorporation of LCP, OMMT, and CNT into elastomer matrix improved the thermal stability. Especially, the CNT- and OMMT-containing composites significantly improved the thermal stability compared with the neat matrix polymer. Simultaneously recorded DSC thermograms revealed that the degradation processes for the neat polymers and their composites were exothermic in air. From the simultaneously recorded DSC data, the enthalpy of thermal decomposition for each composite system was found to be lower than that of the neat matrix and mostly decreasing with increasing filler loading. The isothermal decomposition stabilities of the neat SEBS and its composites containing the different fillers were in agreement with those of the nonisothermal investigation.  相似文献   

15.
An analytical method for multi-class pharmaceuticals determination in wastewater has been developed and validated. Target compounds were: sulfonamides (sulfadiazine, sulfaguanidine, sulfamethazine, sulfamethoxazole), fluoroquinolones (ciprofloxacin, enrofloxacin, norfloxacin), diaminopyrimidine (trimethoprim), anaesthetic (procaine), anthelmintic (praziquantel and febantel), and macrolide (roxithromycin). The method involves pre-concentration and clean-up by solid-phase extraction (SPE) using Strata-X extraction cartridges at pH 4.0. Target analytes were identified and quantitatively determined by liquid chromatography–tandem mass spectrometry using multiple reaction monitoring (MRM). Recoveries were higher than 50% with relative standard deviation (RSD) below 18.3% for three concentrations. Only for sulfaguanidine was low recovery obtained. Matrix effect was evaluated using matrix-matched standards. The method detection limit (MDL) was between 0.5 and 5 ng L−1 in spiked water samples. The precision of the method, calculated as relative standard deviation, ranged from 0.5 to 2.0% and from 1.4 to 8.3 for intra-day and inter-day analysis, respectively. The described analytical method was used for determination of pharmaceuticals in effluent wastewaters from the pharmaceutical industry.  相似文献   

16.
The use of 1-phenyl-3-methyl-4-benzoylpyrazolone (PMBP) as extractant for separation of Fe(III) and Fe(II) and low-temperature vaporization of the Fe(III)–PMBP chelate into ICP-AES for their speciation analysis was investigated. The factors affecting the formation of Fe(PMBP)3 chelate and its vaporization behavior were investigated in detail. PMBP was used not only as the extractant for the separation of Fe(III) and Fe(II) but also as the chemical modifier for the low-temperature ETV-ICP-AES determination of iron. Under the optimized conditions, the detection limit for iron(III) and iron(II) are both 3.2?ng/mL, with relative standard deviations of 3.9 and 4.5%, respectively. The proposed method was applied to the determination of trace iron in biological standard reference materials and the species in East Lake water samples, and the results obtained were satisfactory.  相似文献   

17.
18.
19.
A specific, sensitive, precise, and accurate method for the determination of abscisic acid (ABA) in grapevine leaf tissues is described. The method employs high-performance liquid chromatography and electrospray ionization–mass spectrometry (LC-ESI-MS) in selected ion monitoring mode (SIM) to analyze ABA using a stable isotope-labeled ABA as an internal standard. Absolute recoveries ranged from 72% to 79% using methanol/water pH 5.5 (50:50 v/v) as an extraction solvent. The best efficiency was obtained when the chromatographic separation was carried out by using a porous graphitic carbon (PGC) column. The statistical evaluation of the method was satisfactory in the work range. A relative standard deviation (RDS) of < 5.5% and < 6.0% was obtained for intra-batch and inter-batch comparisons, respectively. As for accuracy, the relative error (%Er) was between −2.7 and 4.3%, and the relative recovery ranged from 95% to 107%.  相似文献   

20.
Journal of Solid State Electrochemistry - Poly(ε-caprolactone) (PCL) was chosen as a gelator for dimethylformamide (DMF)-potassium iodide (KI) liquid electrolyte. The mass fraction of PCL,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号