首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The H(2)C=CD isotopic species of vinyl radical produced in a supersonic jet expansion by ultraviolet laser photolysis was studied by millimeter-wave spectroscopy. Due to the tunneling motion of the α deuteron, the ground state is split into two components, 0(+) and 0(-). Tunneling-rotation transitions connecting the lower (0(+)) and upper (0(-)) components of the tunneling doublet were observed in the frequency region of 184-334 GHz, including three R- and two Q-branch transitions. Three and two pure rotational transitions in the K(a)=0 and 1 stacks, respectively, were also observed for each of the 0(+) and 0(-) states in the frequency region of 52-159 GHz. Least-squares analysis of the observed frequencies for the tunneling-rotation and pure rotational transitions with well resolved hyperfine structures yielded a set of precise molecular constants, among which the tunneling splitting in the ground state was determined to be ΔE(0)=1187.234(17)?MHz, which is 1/14 that for H(2)C=CH. The potential barrier height derived from the observed tunneling splitting by an analysis of the tunneling dynamics using a one-dimensional model is 1545?cm(-1), consistent with the value 1568?cm(-1) obtained for the normal vinyl. The observed spectrum was found to be perturbed by a hyperfine interaction connecting ortho and para levels. The constant for the interaction, which we call the ortho-para mixing Fermi contact interaction, has been determined to be δa(F) ((β))=68.06(53)?MHz. This is believed to be the first definite detection of such an interaction. By this interaction the ortho and para states of H(2)C=CD are mixed up to about 0.1%. The constant is more than 1000 times larger than spin-rotation interaction constants that cause ortho-para mixing in closed shell molecules and suggests extremely rapid conversion between the ortho and para nuclear spin isomers of H(2)C=CD.  相似文献   

2.
The vinyl radical in the ground vibronic state produced in a supersonic jet expansion by 193 nm excimer laser photolysis of vinyl bromide was investigated by millimeter-wave spectroscopy. Due to the proton tunneling, the ground state is split into two components, of which the lower and higher ones are denoted as 0+ and 0-, respectively. Eight pure rotational transitions with Ka = 0 and 1 obeying a-type selection rules were observed for each of the 0+ and 0- states in the frequency region of 60-250 GHz. Tunneling-rotation transitions connecting the lower (0+) and upper (0-) components of the tunneling doublet, obeying b-type selection rules, were also observed in the frequency region of 190-310 GHz, including three R- and six Q-branch transitions. The observed frequencies of the pure rotational and tunneling-rotation transitions were analyzed by using an effective Hamiltonian in which the coupling between the 0+ and 0- states was taken into account. A set of precise molecular constants was obtained. Among others, the proton tunneling splitting in the ground state was determined to be DeltaE0 = 16,272(2) MHz. The potential barrier height was estimated to be 1580 cm(-1) from the proton tunneling splitting, by an analysis using a detailed one-dimensional model. The spin-rotation and hyperfine interaction constants were also determined for the 0+ and 0- states together with the off-diagonal interaction constants connecting the 0+ and 0- states, epsilonab + epsilonba for the spin-rotation interaction and Tab for the hyperfine interaction of the alpha (CH) proton. The hyperfine interaction constants, due to the alpha proton and the beta (CH2) protons, are consistent with those derived from electron spin resonance studies.  相似文献   

3.
High-resolution rotational spectra of the helium-pyridine dimer were obtained using a pulsed molecular beam Fourier transform microwave spectrometer. Thirty-nine R-branch (14)N nuclear quadrupole hyperfine components of a- and c-type dipole transitions were observed and assigned. The following spectroscopic parameters were obtained: rotational constants A=3875.2093(48) MHz, B=3753.2514(45) MHz, and C=2978.4366(81) MHz; quartic centrifugal distortion constants D(J)=0.124 08(55) MHz, D(JK)=0.1200(43) MHz, D(K)=-0.2451(25) MHz, d(1)=0.004 27(27) MHz, and d(2)=0.000 16(10) MHz; sextic centrifugal distortion constants H(J)=0.003 053(35) MHz, H(JK)=-0.006 598(47) MHz, and H(K)=0.004 11(59) MHz; (14)N nuclear quadrupole coupling constants chi(aa)((14)N)=-4.7886(76) MHz, chi(bb)((14)N)=1.4471(76) MHz, and chi(cc)((14)N)=3.3415(43) MHz. Our analyses of the rotational and (14)N quadrupole coupling constants show that the He atom binds perpendicularly to the aromatic plane of C(5)H(5)N with a displacement angle of approximately 7.0 degrees away from the c axis of the pyridine monomer, toward the nitrogen atom. Results from an ab initio structure optimization on the second order Moller-Plesset level are consistent with this geometry and gave an equilibrium well depth of 86.7 cm(-1).  相似文献   

4.
Microwave spectra were obtained for two distinct structural isomers of 1,1'-dimethylferrocene, an eclipsed synperiplanar isomer (phi = 0 degrees, the E0 isomer), with A = 1176.9003(2) MHz, B = 898.3343(2) MHz, C = 668.7469(2) MHz, and an eclipsed synclinal isomer (phi = 72 degrees, the E72 isomer) with A = 1208.7117(14) MHz, B = 806.4101(12) MHz, and C = 718.7179(8) MHz. The b-dipole, asymmetric-top spectra of both structural isomers were measured in the frequency range of 5-12 GHz using a Flygare-Balle type of spectrometer. A very good fit to observed transitions, with small distortion constants, was obtained for the E0 conformer, indicating that this conformer is nearly rigid. The deviations obtained in a similar least-squares fit for the E72 confomer are significantly larger, indicating possible fluxional behavior for this conformer. In addition, 7 out of the 26 transitions observed for the E72 isomer conformer clearly exhibit very small splittings, giving further evidence for internal motion. DFT calculations for the different possible conformations of 1,1'- dimethylferrocene arising from rotation of one methyl cyclopentadienyl ligand relative to the other about the nominal C5 axis by an angle phi (dihedral angle) were performed using the B3PW91 functional. The calculations converged and were optimized for five structures on this torsional potential energy surface corresponding to different dihedral angles phi; three yielded energy minima, and two gave energy maxima, corresponding to transition states. The experimental results are in very good agreement with the results of the DFT calculations.  相似文献   

5.
The rotational spectra of CF(3)I···NH(3) and CF(3)I···N(CH(3))(3) are measured between 6.7 and 18 GHz using a chirped-pulse Fourier transform microwave spectrometer. Transitions in each spectrum are assigned to A and E species associated with ground and excited internal rotor states respectively. Rotational constants, B(0), centrifugal distortion constants, D(J), D(Jm), D(JKm), nuclear quadrupole coupling constants of the (14)N and (127)I atoms, χ(aa)(N) and χ(aa)(I), are determined for each complex. D(JK) is additionally determined for CF(3)I···NH(3). Results are presented for both (14)N and (15)N-substituted isotopologues. All data are consistent with C(3v) symmetric top structures for both complexes. The nuclear quadrupole coupling constants of iodine are determined to be -2230.030(83) MHz and -2241.61(17) MHz in CF(3)I···(14)NH(3) and CF(3)I···(14)N(CH(3))(3) respectively. The data are interpreted through a model that accounts for the internal dynamics of the complexes in order to determine the length of the halogen bond between the iodine and nitrogen atoms, r(N···I). Values of r(N···I) are thus determined to lie in the ranges 3.054 ? > r(N···I) > 3.034 ? and 2.790 ? > r(N···I) > 2.769 ? for CF(3)I···NH(3) and CF(3)I···N(CH(3))(3) respectively.  相似文献   

6.
The rotational spectra of five isotopologues of the molecular adduct 1,1,1-trifluoroacetone-water have been assigned using pulsed-jet Fourier-transform microwave spectroscopy. All rotational transitions appear as doublets, due to the internal rotation of the methyl group. Analysis of the tunneling splittings allows one to determine accurately the height of the 3-fold barrier to internal rotation of the methyl group and its orientation, leading to V(3) = 3.29 kJ·mol(-1) and ∠(a,i) = 67.5°, respectively. The water molecule is linked to the keton molecule on the side of the methyl group through a O-H···O hydrogen bond and a C-H···O intermolecular contact, lying in the effective plane of symmetry of the complex.  相似文献   

7.
Formic acid (HCOOH, FA) and acetic acid (CH(3)COOH, AA) are studied in a nitrogen matrix. The infrared (IR) spectra of cis and trans conformers of these carboxylic acids (and also of the HCOOD isotopologue of FA) are reported and analyzed. The higher-energy cis conformer of these molecules is produced by narrowband near-IR excitation of the more stable trans conformer, and the cis-to-trans tunneling decay is evaluated spectroscopically. The tunneling process in both molecules is found to be substantially slower in a nitrogen matrix than in rare-gas matrices, the cis-form decay constants being approximately 55 and 600 times smaller in a nitrogen matrix than in an argon matrix, for FA and AA respectively. The stabilization of the higher-energy cis conformer is discussed in terms of specific interactions with nitrogen molecule binding with the OH group of the carboxylic acid. This model is in agreement with the observed differences in the IR spectra in nitrogen and argon matrices, in particular, the relative frequencies of the νOH and τCOH modes and the relative intensities of the νOH and νC=O bands.  相似文献   

8.
The S(1)/S(2) state exciton splittings of symmetric doubly hydrogen-bonded gas-phase dimers provide spectroscopic benchmarks for the excited-state electronic couplings between UV chromophores. These have important implications for electronic energy transfer in multichromophoric systems ranging from photosynthetic light-harvesting antennae to photosynthetic reaction centers, conjugated polymers, molecular crystals, and nucleic acids. We provide laser spectroscopic data on the S(1)/S(2) excitonic splitting Δ(exp) of the doubly H-bonded o-cyanophenol (oCP) dimer and compare to the splittings of the dimers of (2-aminopyridine)(2), [(2AP)(2)], (2-pyridone)(2), [(2PY)(2)], (benzoic acid)(2), [(BZA)(2)], and (benzonitrile)(2), [(BN)(2)]. The experimental S(1)/S(2) excitonic splittings are Δ(exp) = 16.4 cm(-1) for (oCP)(2), 11.5 cm(-1) for (2AP)(2), 43.5 cm(-1) for (2PY)(2), and <1 cm(-1) for (BZA)(2). In contrast, the vertical S(1)/S(2) energy gaps Δ(calc) calculated by the approximate second-order coupled cluster (CC2) method for the same dimers are 10-40 times larger than the Δ(exp) values. The qualitative failure of this and other ab initio methods to reproduce the exciton splitting Δ(exp) arises from the Born-Oppenheimer (BO) approximation, which implicitly assumes the strong-coupling case and cannot be employed to evaluate excitonic splittings of systems that are in the weak-coupling limit. Given typical H-bond distances and oscillator strengths, the majority of H-bonded dimers lie in the weak-coupling limit. In this case, the monomer electronic-vibrational coupling upon electronic excitation must be accounted for; the excitonic splittings arise between the vibronic (and not the electronic) transitions. The discrepancy between the BO-based splittings Δ(calc) and the much smaller experimental Δ(exp) values is resolved by taking into account the quenching of the BO splitting by the intramolecular vibronic coupling in the monomer S(1) ← S(0) excitation. The vibrational quenching factors Γ for the five dimers (oCP)(2), (2AP)(2), (2AP)(2), (BN)(2), and (BZA)(2) lie in the range Γ = 0.03-0.2. The quenched excitonic splittings Γ[middle dot]Δ(calc) are found to be in very good agreement with the observed splittings Δ(exp). The vibrational quenching approach predicts reliable Δ(exp) values for the investigated dimers, confirms the importance of vibrational quenching of the electronic Davydov splittings, and provides a sound basis for predicting realistic exciton splittings in multichromophoric systems.  相似文献   

9.
We report on rotationally resolved IR spectra of dimers of HDO as a deuterium (d) donor with H(2)O, HDO, and D(2)O embedded in superfluid Helium nanodroplets in the 2650-2660 and 2725-2740 cm(-1) regions of the O-D donor stretch and symmetric acceptor stretch vibrations, respectively. By comparing spectra at different levels of deuteration we were able to unambiguously assign the donor stretch signals of H(2)O···DOH, HDO···DOH, and D(2)O···DOH. For H(2)O···DOH, three ΔK(a) = 0 sub-bands were found that were assigned to transitions from the lower and upper acceptor switching states of K(a) = 0 and the lower acceptor switching state of K(a) = 1. In addition, b- and c-type transitions in the acceptor stretch region of HDO···DOH were observed that allowed us to determine the acceptor switching splitting of Δv? = 5.68 cm(-1) in the HDO···DOH vibrational ground state. We suggest that the dominating broadening mechanism is intervibrational relaxation due to coupling of the rovibrational levels of the chromophore via internal droplet excitations.  相似文献   

10.
Jet-cooled high-resolution infrared spectra of partially deuterated hydronium ion (HD2O+) in the O-H stretch region (nu3 band) are obtained for the first time, exploiting the high ion densities, long absorption path lengths, and concentration modulation capabilities of the slit-jet discharge spectrometer. Least-squares analysis with a Watson asymmetric top Hamiltonian yields rovibrational constants and provides high level tests of ab initio molecular structure predictions. Transitions out of both the lower (nu3(+)<--0(+)) and the upper (nu3(-)<--0(-)) tunneling levels, as well as transitions across the tunneling gap (nu3(-)<--0(+)) are observed. The nu3(-)<--0(+) transitions in HD2O+ acquire oscillator strength by loss of D(3h) symmetry, and permit both ground-state-[27.0318(72) cm(-1)] and excited-state-[17.7612(54) cm(-1)]-tunneling splittings to be determined to spectroscopic precision from a single rovibrational band. The splittings and band origins calculated with recent high level ab initio six-dimensional potential surface predictions for H3O+ and isotopomers [X. C. Huang, S. Carter, and J. M. Bowman, J. Chem. Phys. 118, 5431 (2003); T. Rajamaki, A. Miani, and L. Halonen, J. Chem. Phys. 118, 10929 (2003)] are in very good agreement with the current experimental results.  相似文献   

11.
The first high resolution spectroscopic data for jet cooled H2DO+ are reported, specifically via infrared laser direct absorption in the OH stretching region with a slit supersonic jet discharge source. Transitions sampling upper (0-) and lower (0+) tunneling states for both symmetric (nu1+ <-- 0+, nu1- <-- 0-, and nu1- <-- 0+) and antisymmetric (nu3+ <-- 0+ and nu3- <-- 0-) OH stretching bands are observed, where +/- refers to wave function reflection symmetry with respect to the planar umbrella mode transition state. The spectra can be well fitted to a Watson asymmetric top Hamiltonian, revealing band origins and rotational constants for benchmark comparison with high-level ab initio theory. Of particular importance are detection and assignment of the relatively weak band (nu1- <-- 0+) that crosses the inversion tunneling gap, which is optically forbidden in H3O+ or D3O+, but weakly allowed in H2DO+ by lowering of the tunneling transition state symmetry from D(3h) to C(2v). In conjunction with other H2DO+ bands, this permits determination of the tunneling splittings to within spectroscopic precision for each of the ground [40.518(10) cm(-1)], nu1 = 1 [32.666(6) cm(-1)], and nu3 = 1 [25.399(11) cm(-1)] states. A one-dimensional zero-point energy corrected potential along the tunneling coordinate is constructed from high-level ab initio CCSD(T) calculations (AVnZ, n = 3,4,5) and extrapolated to the complete basis set limit to extract tunneling splittings via a vibrationally adiabatic treatment. Perturbative scaling of the potential to match splittings for all four isotopomers permits an experimental estimate of DeltaV0 = 652.9(6) cm(-1) for the tunneling barrier, in good agreement with full six-dimensional ab initio results of Rajamaki, Miani, and Halonen (RMH) [J. Chem. Phys. 118, 10929 (2003)]. (DeltaV0 (RMH) = 650 cm(-1)). The 30%-50% decrease in tunneling splitting observed upon nu1 and nu3 vibrational excitations arises from an increase in OH stretch frequencies at the planar transition state, highlighting the transition between sp2 and sp3 hybridizations of the OHD bonds as a function of inversion bending angle.  相似文献   

12.
Fourier transform infrared absorption spectra containing evidence for about two dozen spectral tunneling doublets are reported for gaseous tropolone(OH), tropolone (OD), and 18O,18O-tropolone(OH) in the 800 to 300 cm-1 spectral range. No FTIR absorption was detected in the 300-150 cm-1 range. The known zero-point (ZP) tunneling splitting values Delta0 = 0.974 cm-1 for tropolone(OH) (Tanaka et al.) and 0.051 cm-1 for tropolone(OD) (Keske et al.) allow vibrational state-specific tunneling splittings Deltav to be estimated for fundamentals including three with strong O...O stretching displacements [cf. for tropolone(OH) nu13(a1) = 435.22 cm-1 with HDelta13 = 1.71 cm-1 = 1.76 HDelta0, and for tropolone(OD) nu13(a1) = 429.65 cm-1 with DDelta13 = 0.32 cm-1 = 6.27 DDelta0]. The majority of Deltav splittings in the sub-800 cm-1 range are dilated relative to the isotopomer Delta0 values. The FTIR spectra demonstrate the presence of dynamic couplings and potential function anharmonicity in addition to revealing Deltav splittings and many OH/D and 18O/16O isotope effects. Approximate values are obtained for the ZP splittings 88Delta0 and 86Delta0 of the doubly and singly 18O-labeled isotopomers of tropolone(OH). The diverse values of the observed Deltav/Delta0 splitting ratios underscore the inherent multidimensionality and corner-cutting activities entering the state-specific tunneling processes of the tropolone tautomerization reaction.  相似文献   

13.
The microwave spectra of exo- and endo-norborneols and their isotopic species deuterated in the hydroxyl group have been investigated over the frequency range 8–40 GHz. Conventional Stark spectroscopy and microwave—microwave double resonance were used to assign Q and R-branch rotational transitions. From the measured transition frequencies the rotational constants A = 3605.9374(9) MHz, B = 1935.4207(8) MHz and C = 1752.3947(8) MHz have been fitted for exo-norborneol and A = 3151.4865(15) MHz, B = 2095.2483(24) MHz and C = 1914.7057(25) MHz for endo-norborneol. Quantitative measurements of the Stark splittings of selected transitions yielded the dipole components μa = 0.53(9) D, μb = 1.22(6) D and μc = 0.294(4) D and the total dipole moment μ = 1.36(9) D of exo-norborneol. The spectroscopic constants of the deuterated species -were used to deduce the orientation of the hydroxyl group of the only conformer found for each isomer of norborneol.  相似文献   

14.
Cruywagen JJ  van de Water RF 《Talanta》1993,40(7):1091-1095
The hydrolysis of lead(II) has been investigated by potentiometric titrations (ionic medium 1.0M NaClO(4) and 1.0M KNO(3)) and enthalpimetric titrations (ionic medium 1.0M NaClO(4)) at 25 degrees . The reaction model that gave the best fit to the data for 1.0M NaClO(4) comprised the following five ions: Pb(OH)(+), Pb(3)(OH)(2+)(4), Pb(3)(OH)(+)(5), Pb(4)(OH)(4+)(4) and Pb(6)(OH)(4+)(8). The formation constants, and enthalpy changes (kJ/mol) for these species, defined according to equation (1), have the values log beta(11) = -7.8, DeltaH(0)(11) = 24; log beta(34) = -22.69, DeltaH(0)(34) = 112; log beta(35) = -30.8, DeltaH(0)(35) = 146; log beta(44) = -19.58, DeltaH(0)(44) = 86; log beta(68) = -42.43, DeltaH(0)(68) = 215. Equilibrium constants determined in nitrate medium show good agreement with those pertaining to perchlorate medium if complexation of lead(II) with nitrate is taken into account.  相似文献   

15.
The femtosecond degenerate four-wave mixing (fs-DFWM) technique is applied for the measurement of accurate rotational constants of cyclobutane (C4H8). The vibrational levels of C4H8 exhibit tunneling splitting due to the ring-puckering interconversion between the symmetry-equivalent D2d minima via a planar D4h barrier. For the v = 0 ground state, the fs-DFWM method yields a rotational constant B + 0 = 10663.452(18) MHz. The ring-puckering tunneling leads to slightly different rotational constants for the 0+ and 0- levels, B + 0 - B -0 = 33 +/- 2 kHz. This difference increases by a factor of approximately 90 in the v = 1+/1- ring-puckering states to B +1 - B -1 = -3059 +/- 4 kHz. Combining the experimental rotational constants with the structure parameters and rotational constants calculated by high-level ab initio calculations allows us to determine accurate equilibrium and vibrationally averaged structure parameters for cyclobutane, for example, re(C-C) = 1.5474 A, re(C-Haxial) = 1.0830 A, re(C-Hequatorial) = 1.0810 A, and ring puckering angle theta e = 29.8 degrees .  相似文献   

16.
Daniele PG  Rigano C  Sammartano S  Zelano V 《Talanta》1994,41(9):1577-1582
The hydrolysis of iron(III) was studied potentiometrically at different ionic strengths in KNO(3) aqueous solutions, at 25 degrees C, to determine the dependence of hydrolysis constants on ionic strength (nitrate media), to check the existence of nitrate-ferric ion interactions, and to confirm the formation of high polymeric species. Under the experimental conditions 0.03 I (KNO(3)) 1M, 0.3 C 12 mM, the species Fe(OH)(2+), Fe(2)(OH)(4+)(2), Fe(OH)(+)(2) and Fe(12)(OH)(2+)(34) were found, and the hydrolysis constants log beta(11) = 2.20, log beta(12) = -2.91, log beta(22) = -5.7, log beta(12,34) = -48.9 (I = 0M) were calculated. The ionic strength dependence of hydrolysis constants is quite close to that found for several protonation and metal complex formation constants reported elsewhere.  相似文献   

17.
The rotational spectra of the (20)Ne and (22)Ne isotopomers of the Ne-dimethyl sulfide (DMS) rare gas dimer have been measured by Fourier transform microwave spectroscopy. MP2/6-311++G(2d,2p) calculations, and the experimental spectroscopic data, suggest a structure of C(s) symmetry in which the Ne atom lies above the heavy atom plane of the DMS (in the sigma(v) plane which bisects the CSC angle). Experimental rotational constants are consistent with a S...Ne distance of 3.943(6) Angstroms and a (cm...S...Ne) angle of 63.2(6) degrees (where cm is the center of mass of DMS). A motion of the Ne atom from one side of the DMS to the other gives rise to inversion splittings of around 3 MHz in the c-type transitions. An ab initio potential energy surface calculation has allowed examination of several possible tunneling pathways, and suggests a barrier of between 20 and 40 cm(-1) for the inversion motion, depending on the tunneling pathway taken by the Ne. Dipole moment measurements are consistent with both the experimental and ab initio structures.  相似文献   

18.
Microwave spectra in the 7-26 MHz region have been measured for the van der Waals complexes, Ar-CH3CH2CH3, Ar-(13)CH3CH2CH3, 20Ne-CH3CH2CH3, and 22Ne-CH3CH2CH3. Both a- and c-type transitions are observed for the Ar-propane complex. The c-type transitions are much stronger indicating that the small dipole moment of the propane (0.0848 D) is aligned perpendicular to the van der Waals bond axis. While the 42 transition lines observed for the primary argon complex are well fitted to a semirigid rotor Hamiltonian, the neon complexes exhibit splittings in the rotational transitions which we attribute to an internal rotation of the propane around its a inertial axis. Only c-type transitions are observed for both neon complexes, and these are found to occur between the tunneling states, indicating that internal motion involves an inversion of the dipole moment of the propane. The difference in energy between the two tunneling states within the ground vibrational state is 48.52 MHz for 20Ne-CH3CH2CH3 and 42.09 MHz for 22Ne-CH3CH2CH3. The Kraitchman substitution coordinates of the complexes show that the rare gas is oriented above the plane of the propane carbons, but shifted away from the methylene carbon, more so in Ne propane than in Ar propane. The distance between the rare gas atom and the center of mass of the propane, Rcm, is 3.823 A for Ar-propane and 3.696 A for Ne-propane. Ab initio calculations are done to map out segments of the intermolecular potential. The global minimum has the rare gas almost directly above the center of mass of the propane, and there are three local minima with the rare gas in the plane of the carbon atoms. Barriers between the minima are also calculated and support the experimental results which suggest that the tunneling path involves a rotation of the propane subunit. The path with the lowest effective barrier is through a C2v symmetric configuration in which the methyl groups are oriented toward the rare gas. Calculating the potential curve for this one-dimensional model and then calculating the energy levels for this potential roughly reproduces the spectral splittings in Ne-propane and explains the lack of splittings in Ar-propane.  相似文献   

19.
We report the observation of extensive a- and c-type rotation-tunneling (RT) spectra of (D2O)2 for Ka = 0-4. These data allow quantification of molecular constants and tunneling splittings for a number of previously unobserved RT states of (D2O)2. The vibrational ground state has thus been characterized to energies as high as those of some of the intermolecular vibrations, and we present the first test of the VRT(ASP-W) potential at these high Ka states.  相似文献   

20.
Spectral doublet separations reported for gas phase and neon matrix-isolated samples of tropolone(OH) and tropolone(OD) are found to support recent work suggesting the possibility that tropolone has a slightly nonplanar geometry in the S1 (A 1B2) (pi*-pi) electronic state. Tautomerizations of gaseous tropolones in the S0 and S1 states are governed by equal double-minimum potential energy functions (PEFs), but interactions in the neon matrix environment transform the tautomerization PEFs of the slightly nonplanar S1 tropolones into unequal double-minimum PEFs. The spectral doublets reported for the zero-point S1-S0 transitions imply energy minima for the nonplanar S1 state in a neon matrix are offset by about 7 cm-1, and tunneling splittings in the symmetric double minimum PEFs of the gaseous molecules are damped about 2 cm-1 by the matrix environment. This means gas phase tunneling splittings smaller than 2 cm-1 are fully quenched in the neon matrix, and gas phase tunneling splittings near 20 cm-1 are damped by only 10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号