首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In proposals for quantum computers using arrays of trapped ultracold polar molecules as qubits, a strong external field with appreciable gradient is imposed in order to prevent quenching of the dipole moments by rotation and to distinguish among the qubit sites. That field induces the molecular dipoles to undergo pendular oscillations, which markedly affect the qubit states and the dipole-dipole interaction. We evaluate entanglement of the pendular qubit states for two linear dipoles, characterized by pairwise concurrence, as a function of the molecular dipole moment and rotational constant, strengths of the external field and the dipole-dipole coupling, and ambient temperature. We also evaluate a key frequency shift, △ω, produced by the dipole-dipole interaction. Under conditions envisioned for the proposed quantum computers, both the concurrence and △ω become very small for the ground eigenstate. In principle, such weak entanglement can be sufficient for operation of logic gates, provided the resolution is high enough to detect the △ω shift unambiguously. In practice, however, for many candidate polar molecules it appears a challenging task to attain adequate resolution. Simple approximate formulas fitted to our numerical results are provided from which the concurrence and △ω shift can be obtained in terms of unitless reduced variables.  相似文献   

2.
3.
The induced polarization of a beam of polar clusters or molecules passing through an electric or magnetic field region differs from the textbook Langevin-Debye susceptibility. This distinction, which is important for the interpretation of deflection and focusing experiments, arises because instead of acquiring thermal equilibrium in the field region, the beam ensemble typically enters the field adiabatically, i.e., with a previously fixed distribution of rotational states. We discuss the orientation of rigid symmetric top systems with a body-fixed electric or magnetic dipole moment. The analytical expression for their "adiabatic-entry" orientation is elucidated and compared with exact numerical results for a range of parameters. The differences between the polarization of thermodynamic and "adiabatic-entry" ensembles of prolate and oblate tops, and of symmetric top and linear rotators, are illustrated and identified.  相似文献   

4.
Hydrogen molecules are excited in a molecular beam to Rydberg states around n=17-18 and are exposed to the inhomogeneous electric field of an electric dipole. The large dipole moment produced in the selected Stark eigenstates leads to strong forces on the H2 molecules in the inhomogeneous electric field. The trajectories of the molecules are monitored using ion-imaging and time of flight measurements. With the dipole rods mounted parallel to the beam direction, the high-field-seeking and low-field-seeking Stark states are deflected towards and away from the dipole, respectively. The magnitude of the deflection is measured as a function of the parabolic quantum number k and of the duration of the applied field. It is also shown that a large deflection is observed when populating the (17d2)1 state at zero field and switching the dipole field on after a delay. With the dipole mounted perpendicular to the beam direction, the molecules are either accelerated or decelerated as they move towards the dipole. The Rydberg states are found to survive for over 100 micros after the dipole field is switched off before being ionized at the detector and the time of flight is measured. A greater percentage change in kinetic energy is achieved by initial seeding of the beam in helium or neon followed by inhomogeneous field deceleration/acceleration. Molecular dynamics trajectory simulations are presented highlighting the extent to which the trajectories can be predicted based on the known Stark map. The spectroscopy of the populated states is discussed in detail and it is established that the N+=2, J=1, MJ=0 states populated here have a special stability with respect to decay by predissociation.  相似文献   

5.
Absorption and fluorescence from single molecules can be tuned by applying an external electric field – a phenomenon known as the Stark effect. A linear Stark effect is associated to a lack of centrosymmetry of the guest in the host matrix. Centrosymmetric guests can display a linear Stark effect in disordered matrices, but the response of individual guest molecules is often relatively weak and non-uniform, with a broad distribution of the Stark coefficients. Here we introduce a novel single-molecule host-guest system, dibenzoterrylene (DBT) in 2,3-dibromonaphthalene (DBN) crystal. Fluorescent DBT molecules show excellent spectral stability with a large linear Stark effect, of the order of 1.5 GHz/kVcm−1, corresponding to an electric dipole moment change of around 2 D. Remarkably, when the electric field is aligned with the a crystal axis, nearly all DBT molecules show either positive or negative Stark shifts with similar absolute values. These results are consistent with quantum chemistry calculations. Those indicate that DBT substitutes three DBN molecules along the a-axis, giving rise to eight equivalent embedding sites, related by the three glide planes of the orthorhombic crystal. The static dipole moment of DBT molecules is created by host-induced breaking of the inversion symmetry. This new host–guest system is promising for applications that require a high sensitivity of fluorescent emitters to electric fields, for example to probe weak electric fields.  相似文献   

6.
Permanent electric dipole moments and magnetic g factors for uranium monoxide (UO) have been determined from analyses of optical Stark and Zeeman spectra recorded at a spectral resolution that approaches the natural linewidth limit. Numerous branch features in the previously characterized [L. A. Kaledin et al., J. Mol. Spectrosc. 164, 27 (1994)] (0,0) [18403]5-X(1)4 and (0,0) [18404]5-X(1)4 electronic transitions were recorded in the presence of tunable static electric (Stark effect) or magnetic (Zeeman effect) fields. The lines exhibited unusually large Zeeman tuning effects. A ligand field model and an ab initio electronic structure calculation [R. Tyagi, Ph.D. thesis, The Ohio State University (2005)] were used to interpret the ground state properties. The results indicate that the low energy electronic states of UO are sufficiently ionic for the meaningful application of ligand field theory models. The dipole moments and g factors were distinctly different for the three electronic states examined, which implies that these properties may be used to deduce the underlying electronic state configurations.  相似文献   

7.
The theory of second-order Stark effect in 1Σ states of heteronuclear diatomic molecules is thoroughly reviewed. The rigorous treatment given demonstrates that by introducing rotational, vibrational and electronic branch polarizabilities, the intrinsic character of the second-order Stark effect in diatomic molecules can be shown to be related more closely to polarizabilities than to dipole moments. The well-known expression for the Stark shift in 1Σ levels which is dominated by the square of the dipole moment is only a crude, though sufficient approximation whenever large dipole moments are involved. For small dipole moments, however, this approximation is likely to fail, leading to an erroneous determination of such dipole moments. In the limiting case of negligible influence of the molecular rotation on the vibronic matrix elements, the arithmetic mean of the electronic branch polarizabilities turns out to be equal to the well-known static electronic polarizabilities α and α. The results are applied to the interpretation of the Stark splitting in the A1Σ+, υ′ = 5, J′ = 1 level of 7LiH, recently determined by Stark quantum-beat spectroscopy.  相似文献   

8.
朱强  阚子规  马晶 《电化学》2017,23(4):391
本文利用分子动力学模拟探讨了不同外电场下,液态水的分子间作用及分子排布的变化. 在不同外电场下,O…O原子间的径向分布函数差别很小,但是单个水分子的偶极矩的取向变化却很大. 当外电场为0时,单个水分子偶极取向的范围很宽(30-150度). 与此同时,本文给出了局域诱导电场随着位置的变化关系图. 当外加电场增强时,局域的诱导电场强度也随之增加. 由于电场下偶极矩有序性的增加,局域诱导的静电相互作用能显著增加. 计算结果表明,相对介电常数随着电场强度的增加而呈现指数衰减的变化形式. 这一变化趋势可以用来理解不同电化学环境下,静电相互作用和局域诱导电场的变化.  相似文献   

9.
Consideration is given to the possibility of a molecule moving unidirectionally in an electric field of a polar periodic substrate as a result of the fluctuations of molecular dipole moment occurring on the photoexcitation of the molecule. As estimated for such motion, molecules with sufficiently long fluorescence and strongly differing dipole moments in the ground and excited states can move with an average velocity of the same order as that typical of protein motors such as kinesin. This effect results from the mutual compensation of two opposite factors acting in dipole photomotors, namely, a lower energy of interaction with the substrate relative to that for protein motors and a shorter excited-state lifetime as compared with the duration of the hydrolytic splitting of adenosinetriphosphate in protein motors.  相似文献   

10.
The position and the intensity of electronic bands are influenced by an electric field. Pronounced changes in the position of absorption bands are mainly due to the dipole moment of the molecule in the ground state and the change in the dipole moment during the excitation process, and pronounced changes in intensity are due to the field dependence of the transition moment, which can be described by the transition polarizability. The effect of an external electric field on the optical absorption (electrochromism) of suitable molecules can be used to determine the dipole moment in the ground state, the change in dipole moment during the excitation process, the direction of the transition moment of the electronic band, and certain components of the transition polarizability tensor. These data largely determine the strong solvatochromism (solvent-dependence of the position and intensity of electronic bands), which is observed in particular with molecules having large dipole moments. Smaller contributions to solvatochromism result from dispersion interactions, which predominate in the case of nonpolar molecules. The models developed have been experimentally checked and verified by a combination of electro-optical absorption measurements (influence of an external electric field on absorption) and investigation of the solvent-dependence of the electronic bands.  相似文献   

11.
Stark effects on the phosphorescence origins of benzophenone and three derivatives (4,4′-dibromobenzophenone, 2-benzoylpyridine, and 3-benzoylpyridine) in a single 4,4′-dibromodiphenylether host crystal have been observed using electric field modulation spectroscopy. The magnitude of the effect for each molecule is determined by the vector difference in the dipole moments of the excited state and the ground state. These differences are found to be similar for all four molecules. This result demonstrates that the orbital configuration of the lowest triplet state is the same for each of these compounds and may indicate that the charge redistribution upon excitation is localized on the carbonyl group.  相似文献   

12.
Ruthenium monofluoride, RuF, has been detected using low-resolution laser-induced fluorescence (LIF) in the visible and near infrared spectral regions. A visible band, designated as [18.2]5.5-X 4Phi(9/2), has been recorded field-free and in the presence of a static electric field using high-resolution LIF spectroscopy. The r0 internuclear distances for the [18.2]5.5 and X 4Phi(9/2) states were determined to be 1.911 and 1.916 A, respectively. The vibrational interval DeltaG(1/2) of 534(15) cm-1 for the X 4Phi(9/2) state was determined from the analysis of the dispersed LIF. The Stark shifts of the visible band were analyzed to produce permanent electric dipole moments of 1.97(8) and 5.34(7) D for the [18.2]5.5 and X 4Phi(9/2), states, respectively. The fluorine magnetic hyperfine structure associated with spectral features was analyzed. The hyperfine structure and dipole moments are interpreted using a molecular-orbital correlation model and compared with FeF and other ruthenium-containing molecules.  相似文献   

13.
The optical, electro-optical, and dynamic characteristics of poly(N-acryloyl-11-aminoundecanoic acid) in organic solvents and of the sodium salt of its monomer in water were studied via the methods of flow birefringence, equilibrium and nonequilibrium electric birefringence, and dynamic light scattering. It is shown that, in aqueous solutions, the monomer forms coarse particles of both symmetric and asymmetric shapes. The linear dimensions of these particles are estimated from the data of translational and rotational diffusion. Polymer macromolecules in organic solvents feature negative anisotropy of optical polarizability. Contributions of optical microform and macroform effects to the observed flow birefringence are analyzed in detail. The intrinsic optical anisotropy of the monomer unit of the polymer, which correlates well with the corresponding values for comb-shaped polymers of a similar structure, is estimated. It is shown that polymer molecules lack marked intrinsic permanent macromolecular dipoles and that electric birefringence in their solutions is associated with macroscopic induced dipole moments that appear during orientation of the dipole moments of polar groups in side chains of the polymer under application of an electric field.  相似文献   

14.
Absorption spectra of poly[4-metacryloyloxy-(4′-carboxy-3′-oxy)azobenzene] films and their complexes with cobalt, without additives or doped with a merocyanine dye whose absorption spectrum lay in the near IR region, were studied before and after switching on an external electric field. An external electric field effect was found on the light transmittance of films within the dye absorption region, which indicated sensitization of the electrooptical effect. The electrooptical properties of the films resulted from spatial reorientation of dipole moments of azobenzene groups in an external electric field, which initiated turning of dye molecules. A phenomenological model was proposed to explain the sensitization of the electrooptical effect.  相似文献   

15.
16.
We have studied electrochemical vibrational and energy properties of CO/Pt(111) in the framework of periodic density functional theory (DFT) calculations. We have used a modified version of the previously developed Filhol-Neurock method to correct the unphysical contributions arising from homogeneous background countercharge in the case of thick metallic slabs. The stability of different CO adsorption sites on Pt(111) (Top, Bridge, Hcp, Fcc) has been studied at constant electric field. The energies are dominated by the surface dipole interaction with the external electric field: a strong positive electric field favors the surfaces with the lower dipole moment (that correspond to the ones with the lower coordination). The Stark tuning slope of the CO stretching frequency for a Top site was calculated for different surface coverages in very good agreement with both experimental and other theoretical results. Finally, we have performed an analysis of the origin of Stark shifts showing that the total Stark effect can be split into two competing components. The first one corresponds to the direct effect of charging on the C-O chemical bond: it is referred as an electrochemical effect. The second is the consequence of the surface dipole interaction with the applied electric field that modifies the C-O distance, inducing a change of the C-O force constant because of C-O bond anharmonicity: it is referred as the electromechanical effect. In the CO/Pt(111) case, the dominant contribution is electromechanical. The electrochemical contribution is very small because the electronic system involved in the surface charging is mostly non-bonding as analyzed by looking at the surface Fukui function.  相似文献   

17.
The P(5) branch features of the A (3)Φ(4)←X (3)Φ(4) (1,0) band near 628.2 nm of a molecular beam of iridium monofluoride, (193)IrF, were recorded field free and in the presence of a static electric field. The (193)Ir (I(1)=3/2) and (19)F (I(2)=1/2) hyperfine interactions in the A (3)Φ(4) (υ=1) and X (3)Φ(4) (υ=0) states were analyzed. The permanent electric dipole moments, μ(el), for the A (3)Φ(4) (υ=1) and X (3)Φ(4) (υ=0) states were determined to be 1.88(5) and 2.82(6) D, respectively, from the analysis of the observed Stark shifts. A comparison of the electric dipole moments for IrC, IrN, and CoF is presented.  相似文献   

18.
Rotationally resolved electronic spectroscopy in the gas phase, in the absence and presence of an applied electric field, has been used to determine the charge distribution of a cross section of the energy landscape of tryptamine (TRA). We report the magnitude and direction of the permanent electric dipole moments of the four TRA conformers GPyout, GPyup, GPhup, and Antiup in their S0 and S1 electronic states. Each dipole moment is unique, providing a powerful new tool for the conformational analysis of biomolecules in the gas phase. A comparison of the results for the different conformers of TRA reveals that the position and orientation of the ethylamine side chain play a major role in determining both the permanent and induced electric dipole moments of the different species in both electronic states.  相似文献   

19.
An ab-initio molecular orbital theory of electrical polarization is presented in which the molecular orbitals are written as linear combinations of atomic functions which depend explicitly on the strength of a uniform external electric field. The wavefunctions in the presence of such a field are determined using self-consistent field perturbation theory. It is shown that the use of field-dependent atomic functions provides an efficient technique for the calculation of electric polarizability tensors. Polarizability tensors and electric-dipole moments calculated using both a minimal and a split-valence-shell basis set are compared with experimental results. Both polarizability-tensor components and dipole moments are seriously underestimated at the minimal bases-set level. The split-valence basis approach yields substantially better results; the calculated values at this level are in reasonable agreement with the corresponding experimental values. The experimental ordering of isotropic polarizabilities for a set of small molecules is duplicated quite closely by both the minimal and the split-valence-shell calculations.  相似文献   

20.
Can octupolar molecules be poled by an external electric field?   总被引:1,自引:0,他引:1  
Octupolar molecules are generally believed to be of potential use in developing nonlinear optical materials owing to the fact that they do not easily form molecular aggregates. This is often put against the conjectured drawback that electric fields have no poling, or ordering, effect for this class of molecules because of the lack of a permanent ground state dipole moment. In this paper, we analyze this notion in some detail and present results from molecular dynamics computer simulations of an ensemble of a prototypical octupolar molecule, the 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) molecule, dissolved in chloroform. It is found that TATB molecules indeed show rather significant dipole moments in solutions because of the dual action of the thermal motions of the atoms and the strong intermolecular interactions. Applied electric fields accordingly show significant effects on the orientations of the molecular dipole moments. We also find that TATB molecules can aggregate because of the strong hydrogen-bonding interactions between the molecules, though they lack a static permanent dipole moment. Thus, the simulation results for TATB molecules in solution present us with a totally different notion about the collective properties of octupolar molecules. Taking account of quantum chemistry results, we found that the collective molecular nonlinear optical (NLO) properties are enhanced after the onset of the electric field, showing significant anisotropic characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号