首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quadruplex DNA structures are attracting an enormous interest in many areas of chemistry, ranging from chemical biology, supramolecular chemistry to nanoscience. We have prepared carbohydrate–DNA conjugates containing the oligonucleotide sequences of G‐quadruplexes (thrombin binding aptamer (TBA) and human telomere (TEL)), measured their thermal stability and studied their structure in solution by using NMR and molecular dynamics. The solution structure of a fucose–TBA conjugate shows stacking interactions between the carbohydrate and the DNA G‐tetrad in addition to hydrogen bonding and hydrophobic contacts. We have also shown that attaching carbohydrates at the 5′‐end of a quadruplex telomeric sequence can alter its folding topology. These results suggest the possibility of modulating the folding of the G‐quadruplex by linking carbohydrates and have clear implications in molecular recognition and the design of new G‐quadruplex ligands.  相似文献   

2.
Cooperativity is a hallmark of spontaneous biopolymer folding. The presence of intermolecular interactions could create off-pathway misfolding structures and suppress folding cooperativity. This raises the hypothesis that thermodynamic competitivity between off-pathway misfolding and on-pathway folding may intervene with cooperativity and govern biopolymer folding dynamics under conditions permitting large-scale intermolecular interactions. Here we report direct imaging and theoretical modeling of thermodynamic competitivity between biopolymer folding and misfolding under such conditions, using a two-dimensional array of proton-fueled DNA molecular motors packed at the maximal density as a model system. Time-resolved liquid-phase atomic force microscopy with enhanced phase contrast revealed that the misfolding and folding intermediates transiently self-organize into spatiotemporal patterns on the nanoscale in thermodynamic states far away from equilibrium as a result of thermodynamic competitivity. Computer simulations using a novel cellular-automaton network model provide quantitative insights into how large-scale intermolecular interactions correlate the structural dynamics of individual biomolecules together at the systems level.  相似文献   

3.
Herein, we report label‐free detection of single‐molecule DNA hybridization dynamics with single‐base resolution. By using an electronic circuit based on point‐decorated silicon nanowires as electrical probes, we directly record the folding/unfolding process of individual hairpin DNAs with sufficiently high signal‐to‐noise ratio and bandwidth. These measurements reveal two‐level current oscillations with strong temperature dependence, enabling us to determine the thermodynamic and kinetic properties of hairpin DNA hybridization. More importantly, successive, stepwise increases and decreases in device conductance at low temperature on a microsecond timescale are successfully observed, indicating a base‐by‐base unfolding/folding process. The process demonstrates a kinetic zipper model for DNA hybridization/dehybridization at the single base‐pair level. This measurement capability promises a label‐free single‐molecule approach to probe biomolecular interactions with fast dynamics.  相似文献   

4.
5.
张勇  肖忠党 《物理化学学报》2011,27(11):2705-2710
脱氧核糖核酸(DNA)单分子链从完全拉伸状态折叠到平衡状态的动力学过程是溶液中DNA单分子力学的重要特征之一.通过构建全参数化的珠子-弹簧分子链模型,并运用一种高效平衡的半隐式预测——校验积分算法,系统研究了体积排斥作用、有限伸长弹性作用和涨落流体动力学作用等三种非线性作用对稀溶液中DNA分子链折叠过程相对回旋半径和驰豫时间的影响程度和变化趋势.模拟结果发现:体积排斥作用不影响分子链的折叠驰豫时间,但能显著减小平衡时的相对回旋半径;流体动力学作用不影响分子链的相对回旋半径,但明显缩短折叠过程的驰豫时间;有限伸长弹性作用能明显减小短链的相对回旋半径,能显著延长长链的折叠驰豫时间.模拟数据进一步表明:完全伸展的DNA分子链在折叠过程中的相对回旋半径随时间平滑变化,且折叠驰豫时间随长度的标度指数对上述三种非线性作用都具有两种不同的长度依赖性.  相似文献   

6.
Dynamic equilibrium between the folded and unfolded conformations of single stranded DNA hairpin molecules containing polythymine hairpin loops was investigated using simultaneous two-beam fluorescence cross-correlation spectroscopy and single beam autocorrelation spectroscopy. The hairpins were end-labeled with a fluorescent dye and a quencher, such that folding and unfolding of the DNA hairpin primary structure caused the dye fluorescence to fluctuate on the same characteristic time scale as the folding and unfolding reaction. These fluctuations were observed as the molecules flowed sequentially between two spatially offset, microscopic detection volumes. Cross-correlation analysis of fluorescence from the two detection volumes revealed the translational diffusion and flow properties of the hairpins, as well as the average molecular occupancy of the two volumes. Autocorrelation analysis of the fluorescence from the individual detection volumes revealed the kinetics of hairpin folding and unfolding, with the parameters relating to diffusion, flow, and molecular occupancy constrained to the values determined from the cross-correlation analysis. This allowed unambiguous characterization of the folding and unfolding kinetics, without the need to determine the hydrodynamic properties by analyzing a separate control sample. The analysis revealed nonexponential relaxation kinetics and DNA size-dependent folding times characteristic of dynamic heterogeneity in the DNA hairpin-forming mechanism.  相似文献   

7.
The structural dynamics of a DNA hairpin (Hp) are studied in the absence and presence of the two natural osmolytes trimethylamine‐N‐oxide (TMAO) and urea at ambient and extreme environmental conditions, including high pressures and high temperatures, by using single‐molecule Förster resonance energy transfer and fluorescence correlation spectroscopy. The effect of pressure on the conformational dynamics of the DNA Hp is investigated on a single‐molecule level, providing novel mechanistic insights into its conformational conversions. Different from canonical DNA duplex structures of similar melting points, the DNA Hp is found to be rather pressure sensitive. The combined temperature and pressure dependent data allow dissection of the folding free energy into its enthalpic, entropic, and volumetric contributions. The folded conformation is effectively stabilized by the compatible osmolyte TMAO not only at high temperatures, but also at high pressures and in the presence of the destabilizing co‐solute urea.  相似文献   

8.
A shear flow induces the assembly of DNAs with the sticky spots. In order to strictly interpret the mechanism of shear-induced DNA assembly, Brownian dynamics simulations with the bead-spring model were carried out for these molecules at various ranges of the Weissenberg numbers (We). We calculate a formation time and analyze the radial distribution function of end beads and the probability distribution of fractional extension at the formation time to understand the mechanism of shear-induced assembly. At low Weissenberg number the formation time, which is defined as an elapsed time until a multimer forms for the first time, decreases rapidly, reaching a plateau at We = 1000. A shear flow changes the radial distribution of end beads, which is almost the same regardless of the Weissenberg number. A shear flow deforms and stretches the molecules and generates different distributions between end beads with a stickly spot. The fractional extension progresses rapidly in shear flow from a Gaussian-like distribution to a uniform distribution. The progress of the distribution of fractional extension increases the possibility of meeting of end beads. In shear flow, the inducement of the assembly mainly results from the progress of the probability distribution of fractional extension. We also calculate properties such as the radius of gyration, stretch, and so on. As the Weissenberg number increases, the radius of gyration at the formation time also increases rapidly, reaching a plateau at We = 1000.  相似文献   

9.
Frictional effects due to the chain itself, rather than the solvent, may have a significant effect on protein dynamics. Experimentally, such "internal friction" has been investigated by studying folding or binding kinetics at varying solvent viscosity; however, the molecular origin of these effects is hard to pinpoint. We consider the kinetics of disordered glycine-serine and α-helix forming alanine peptides and a coarse-grained protein folding model in explicit-solvent molecular dynamics simulations. By varying the solvent mass over more than two orders of magnitude, we alter only the solvent viscosity and not the folding free energy. Folding dynamics at the near-vanishing solvent viscosities accessible by this approach suggests that solvent and internal friction effects are intrinsically entangled. This finding is rationalized by calculation of the polymer end-to-end distance dynamics from a Rouse model that includes internal friction. An analysis of the friction profile along different reaction coordinates, extracted from the simulation data, demonstrates that internal as well as solvent friction varies substantially along the folding pathways and furthermore suggests a connection between friction and the formation of hydrogen bonds upon folding.  相似文献   

10.
The cold shock protein CspB adopts its native and functional tertiary structure on the millisecond time scale. We employed transverse relaxation NMR methods, which allow a quantitative measurement of the cooperativity of this fast folding reaction on a residue basis. Thereby, chemical exchange contributions to the transverse relaxation rate (R(2)) were observed for every residue of CspB verifying the potential of this method to identify not only local dynamics but also to characterize global events. Toward this end, the homogeneity of the transition state of folding was probed by comparing Chevron plots (i.e., dependence of the apparent folding rate on the denaturant concentration) determined by stopped-flow fluorescence with Chevron plots of six residues acquired by R(2) dispersion experiments. The coinciding results obtained for probes at different locations in the three-dimensional structure of CspB indicate the ability and significance of transverse relaxation NMR to determine Chevron plots on a residue-by-residue basis providing detailed insights on the nature of the transition state of folding.  相似文献   

11.
Cytosine-rich DNA sequences are able to fold into noncanonical structures, in which semi-protonated cytosine pairs develop extra hydrogen bonds, and these bonds are responsible for the overall stability of a structure called the i-motif. The i-motif can be formed in many regions of the genome, but the most representative is the telomeric region in which the CCCTAA sequences are repeated thousands of times. The ability to reverse folding/unfolding in response to pH change makes the above sequence and i-motif very promising components of nanomachines, extended DNA structures, and drug carriers. Molecular dynamics analysis of such structures is highly beneficial due to direct insights into the microscopic structure of the considered systems. We show that Amber force fields for DNA predict the stability of the i-motif over a long timescale; however, these force fields are not able to predict folding of the cytosine-rich sequences into the i-motif. The reason is the kinetic partitioning of the folding process, which makes the transitions between various intermediates too time-consuming in atomistic force field representation. Application of coarse-grained force fields usually highly accelerates complex structural transitions. We, however, found that three of the most popular coarse-grained force fields for DNA (oxDNA, 3SPN, and Martini) were not able to predict the stability of the i-motif structure. Obviously, they were not able to accelerate the folding of unfolded states into an i-motif. This observation must be strongly highlighted, and the need to develop suitable extensions of coarse-grained force fields for DNA is pointed out. However, it will take a great deal of effort to successfully solve these problems.  相似文献   

12.
Although commendable progress has been made in the understanding of the physics of protein folding, a key unresolved issue is whether Kramers' diffusion model of chemical reactions is generally applicable to activated barrier crossing events during folding. To examine the solvent viscosity effect on the folding transition of native-like trapped intermediates, laser flash photolysis has been used to measure the microsecond folding kinetics of a natively folded state of CO-liganded ferrocytochrome c (M-state) in the 1-250 cP range of glycerol viscosity at pH 7.0, 20 degrees C. The single rate coefficient for the folding of the M-state to the native state of the protein (i.e., the M --> N folding process) decreases initially when the solvent viscosity is low (<10 cP), but saturates at higher viscosity, indicating that Kramers model is not general enough for scaling the viscosity dependence of post-transition folding involving glassy dynamics. Analysis based on the Grote-Hynes idea of time dependent friction in conjunction with defect diffusion dynamics can account for the observed non-Kramers scaling.  相似文献   

13.
Using the combination of fluorescence resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) technique, we investigate the mechanism and dynamics of the pH-induced conformational change of i-motif DNA in the bulk phases and at the single-molecule level. Despite numerous studies on i-motif that is formed from cytosine (C)-rich strand at slightly acidic pH, its detailed conformational dynamics have been rarely reported. Using the FRET technique to provide valuable information on the structure of biomolecules such as a protein and DNA, we clearly show that the partially folded species as well as the single-stranded structure coexist at neutral pH, supporting that the partially folded species may exist substantially in vivo and play an important role in a process of gene expression. By measuring the FCS curves of i-motif, we observed the gradual decrease of the diffusion coefficient of i-motif with increasing pH. The quantitative analysis of FCS curves supports that the gradual decrease of diffusion coefficient (D) associated with the conformational change of i-motif is not only due to the change in the intermolecular interaction between i-motif and solvent accompanied by the increase of pH but also due to the change of the shape of DNA. Furthermore, FCS analysis showed that the intrachain contact formation and dissociation for i-motif are 5-10 times faster than that for the open form. The fast dynamics of i-motif with a compact tetraplex is due to the intrinsic conformational changes at the fluorescent site including the motion of alkyl chain connecting the dye to DNA, whereas the slow intrachain contact formation observed from the open form is due to the DNA motion corresponding to an early stage interaction in the folding process of the unstructured open form.  相似文献   

14.
Helix formation is an elementary process in protein folding, influencing both the rate and mechanism of the global folding reaction. Yet, because helix formation is less cooperative than protein folding, the kinetics are often multiexponential, and the observed relaxation times are not straightforwardly related to the microscopic rates for helix nucleation and elongation. Recent ultrafast spectroscopic measurements on the peptide Ac-WAAAH(+)-NH(2) were best fit by two relaxation modes on the ~0.1-1 ns time scale, (1) apparently much faster than had previously been experimentally inferred for helix nucleation. Here, we use replica-exchange molecular dynamics simulations with an optimized all-atom protein force field (Amber ff03w) and an accurate water model (TIP4P/2005) to study the kinetics of helix formation in this peptide. We calculate temperature-dependent microscopic rate coefficients from the simulations by treating the dynamics between helical states as a Markov process using a recently developed formalism. The fluorescence relaxation curves obtained from simulated temperature jumps are in excellent agreement with the experimentally determined results. We find that the kinetics are multiphasic but can be approximated well by a double-exponential function. The major processes contributing to the relaxation are the shrinking of helical states at the C-terminal end and a faster re-equilibration among coil states. Despite the fast observed relaxation, the helix nucleation time is estimated from our model to be 20-70 ns at 300 K, with a dependence on temperature well described by Arrhenius kinetics.  相似文献   

15.
We report molecular dynamics simulations of the equilibrium folding/unfolding thermodynamics of the RNA tetraloop in explicit solvent. A replica exchange molecular dynamics study of the r(CGUUGCCG) oligomer that forms a hairpin is performed for 226 ns per replica, using 52 replicas. We are able to show the unbiased folding of all replicas starting from extended conformations. The equilibrium pressure-temperature free energy of folding, DeltaG(P,T), is calculated from the averaged energy, pressure, and specific volume change upon folding of the oligomer as a function of T at constant volume. We find that this oligomer is destabilized by increasing hydrostatic pressure, similar to the behavior of globular proteins.  相似文献   

16.
17.
Pulse radiolysis is a powerful method to realize real-time observation of various redox processes, which induces various structural and functional changes occurring in biological systems. However, its application has been mainly limited to studies of the redox reactions of rather smaller biological systems such as DNA because of an undesired reaction due to various free radicals generated by pulse radiolysis. For application of pulse radiolysis to generate plenty of redox reactions of biological systems, selective redox reactions induced by electron pulses have to be developed. In this study, we report that in the presence of the high concentration of the denaturant, guanidine HCl (GdHCl), the selective reduction of the oxidized cytochrome c (Cyt c) takes place in time scales of a few microseconds by the electron transfer from the guanidine radical that is formed by the fast reaction of e(aq)(-) with GdHCl, consequently leading to folding kinetics of Cyt c. By providing insight into the folding dynamics of Cyt c, we show that the pulse radiolysis technique can be used to track the folding dynamics of various biomolecules in the presence of a denaturant including GdHCl.  相似文献   

18.
It is well recognized that structure and dynamics of DNA strands guide proteins toward their cognate sites in DNA. While the dynamics is controlled primarily by the nucleotide sequence, the context of a particular sequence in relation to an open end could also play a significant role. In this work we have used the fluorescent analogue of adenine, 2-aminopurine (2-AP), to extract information on site-specific dynamics of DNA strands associated with 30-70 nucleotides length. Measurement of fluorescence lifetime and anisotropy decay kinetics in various types of DNA strands in which 2-AP was located in specific positions revealed novel insights into the dynamics of strands. We find that in single-stranded (ss) DNA, the extent of motional dynamics of the bases falls off sharply from the very end toward the middle of the strand. In contrast, the flexibility of the backbone decreases more gradually in the same direction. In double-stranded (ds) DNA, the level of base-pair fraying increases toward the ends in a graded manner. Surprisingly, the same is countered by the presence of ss-overhangs emanating from dsDNA ends. Moreover, the extent of concerted motion of bases in duplex DNA increased from the end to the middle of the duplex, a result which is both striking and counterintuitive. Most surprisingly, the two complementary strands of a duplex that were unequal in length exhibited differential dynamics: the longer one with overhangs showed a distinctly higher level of flexibility than the recessed shorter strand in the same duplex. All these results, taken together, provoke newer insights in our understanding of how different bases in DNA strands are endowed with specific dynamic properties as a function of their positions. These properties are likely to be used in facilitating specific recognitions of DNA bases by proteins during various DNA-protein interaction systems.  相似文献   

19.
Because protein folding dynamics are heavily overdamped, Kramers theory predicts the rate of folding to scale inversely with the reaction friction, which is usually interpreted to mean the solvent viscosity. This does not mean, however, that the speed of folding can increase without limit as solvent viscosity decreases. We show that, in a sufficiently fast-folding protein, the folding speed approaches a finite limit at low solvent viscosity, indicating a reaction controlled by internal friction.  相似文献   

20.
蛋白表面水的慢尺度动力学行为往往被认为与蛋白的结构稳定性、功能以及折叠过程有关, 但在分子水平上, 还不清楚水分子的慢尺度动力学如何参与蛋白折叠过程. 以Trp-cage蛋白作为个案, 本文利用40条100 ns(总长4 μs)的全原子分子动力学轨迹,分析了蛋白折叠过程中蛋白表面水分子的停留行为,并探究影响蛋白表面水分子慢尺度行为的微观因素. 结果发现, 即使在蛋白折叠过程中蛋白拓扑结构变化很大, 残基之间也会形成稳定的局部暂态结构. 这些结构为水分子提供饱和、稳定的氢键, 通过与水分子之间的极性相互作用, 以及凹形的几何结构, 约束水分子长时停留, 我们称之为“停留中心”. 停留中心的形成是引起水分子慢尺度行为的重要因素. 另外, 停留中心的分布与蛋白折叠的进程有密切关系, 特别地, 在折叠轨迹中, 疏水核周围的残基组成了一个主要的停留中心. 研究结果不但有助于解释水分子慢尺度特征行为的来源, 还可以为实验中通过研究水分子在蛋白附近的慢尺度行为, 揭示蛋白折叠过程中的关键步骤提供一些启发.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号