首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the reaction cycle of glutamate carboxylase, vitamin K epoxidation by O2 has been proposed to generate a very strong base able to remove a proton from the gamma carbon of a Glu residue, thus yielding a Glu-based carbanion that readily reacts with CO2. We have used hybrid density functional theory to study this appealing mechanism. Our calculations show a very exergonic four-step mechanism with the reaction of (triplet) O2 with the singlet vitamin K anion as the rate-limiting step, with a rate similar to the experimental value. Our study also establishes the need to apply continuum models when performing the optimization of minimum-energy crossing points between potential energy surfaces of different multiplicities for enzyme model systems.  相似文献   

2.
We investigate the post-translational generation of Gla (γ-carboxy glutamic acid) from Glu (glutamic acid) by vitamin K carboxylase (VKC) in solvent. VKC is thought to convert vitamin K, in the vitamin K cycle, to an alkoxide-epoxide form, which then reacts with CO(2) to generate an essential ingredient in blood coagulation, γ-carboxyglutamic acid (Gla). The generation of Gla from Glu is found to be exergenic (-15 kcal/mol) in aqueous solution with the SM6 method. We also produced the free energy profile for this model biochemical process with other solvent methods (polarizable continuum model, dielectric polarizable continuum model) and different dielectric constants. The biological implications are discussed.  相似文献   

3.
M. B. Fleury  J. Tohier 《Tetrahedron》1982,38(24):3729-3736
The product of two-electron reduction of 3-thiohydroxy 2-oxo propanoic 1 acid is either β-mercaptolactate or pyruvate when the C---S cleaved. The first pathway predominates in acidic media, the second in slightly basic media. Comparison of the polarographic and UV and NMR spectrometric behaviour of 1 with that of thioether C2H5---S---CH2---CO---CO2H 2 indicates that, in the second dissociation step for 1 (pk2 = 9.6), kinetically controlled formation of the thiolate anion occurs which is slowly converted into an ambident carbanion. A ketol dimeric product was isolated as sodium salt and its structure established by 13C NMR study. The ability to form ambient carbanion in slightly basic medium is of importance in essential biological processes.  相似文献   

4.
Heme oxygenase (HO) catalyzes the O2 and NADPH/cytochrome P450 reductase-dependent conversion of heme to biliverdin, free iron ion, and CO through a process in which the heme participates as both dioxygen-activating prosthetic group and substrate. We earlier confirmed that the first step of HO catalysis is a monooxygenation in which the addition of one electron and two protons to the HO oxy-ferroheme produces ferric-alpha-meso-hydroxyheme (h). Cryoreduction/EPR and ENDOR measurements further showed that hydroperoxo-ferri-HO converts directly to h in a single kinetic step without formation of a Compound I. We here report details of that rate-limiting step. One-electron 77 K cryoreduction of human oxy-HO and annealing at 200 K generates a structurally relaxed hydroperoxo-ferri-HO species, denoted R. We here report the cryoreduction/annealing experiments that directly measure solvent and secondary kinetic isotope effects (KIEs) of the rate-limiting R --> h conversion, using enzyme prepared with meso-deuterated heme and in H2O/D2O buffers to measure the solvent KIE (solv-KIE), and the secondary KIE (sec-KIE) associated with the conversion. This approach is unique in that KIEs measured by monitoring the rate-limiting step are not susceptible to masking by KIEs of other processes, and these results represent the first direct measurement of the KIEs of product formation by a kinetically competent reaction intermediate in any dioxygen-activating heme enzyme.The observation of both solv-KIE(298) = 1.8 and sec-KIE(298) = 0.8 (inverse) indicates that the rate-limiting step for formation of h by HO is a concerted process: proton transfer to the hydroperoxo-ferri-heme through the distal-pocket H-bond network, likely from a carboxyl group acting as a general acid catalyst, occurring in synchrony with bond formation between the terminal hydroperoxo-oxygen atom and the alpha-meso carbon to form a tetrahedral hydroxylated-heme intermediate. Subsequent rearrangement and loss of H2O then generates h.  相似文献   

5.
The structure of 5-hydroxy-3,5-dimethyl-1-S-methylisothiocarbamoyl-2-pyrazolinium iodide (HDMCPI), a cyclic intermediate for a 3-aminopyrazole derivative, was determined by means of X-ray analysis and spectroscopic techniques. In a treatment of HDMCPI in alkaline aqueous solution, 4-acetyl-3(5)-amino-5(3)-methylpyrazole (AAMP) was unexpectedly yielded. The reaction of HDMCPI was monitored by 1H and 13C NMR spectroscopy. It was shown that keto-imine tautomer appears as the only tautomeric form. Density functional theory explained the spontaneous formation of keto-imine tautomer, whose existence is the main condition for generating a carbanion in alkaline medium. The carbanion further undergoes cyclization and elimination of MeSH, thus yielding AAMP. In the reaction of acetylacetone with thiosemicarbazide instead of S-methylisothiosemicarbazide, there were no traces of AAMP. This result can be attributed to the absence of keto-imine form in the tautomeric equilibrium, which would provide the formation of a carbanion for a nucleophilic attack and further cyclization.  相似文献   

6.
在分子尺度上介绍了Au/TiO2(110)模型催化剂表面和单晶Au表面CO氧化反应机理和活性位、以及H2O的作用.在低温(<320 K), H2O起着促进CO氧化的作用, CO氧化的活性位位于金纳米颗粒与TiO2载体界面(Auδ+–Oδ––Ti)的周边. O2和H2O在金纳米颗粒与TiO2载体界面边缘处反应形成OOH,而形成的OOH使O–O键活化,随后OOH与CO反应生成CO2.300 K时CO2的形成速率受限于O2压力与该反应机理相印证.相反,在高温(>320 K)下,因暴露于CO中而导致催化剂表面重组,在表面形成低配位金原子.低配位的金原子吸附O2,随后O2解离,并在金属金表面氧化CO.  相似文献   

7.
We report a detailed density functional theory (B3LYP) analysis of the gas-phase H2O2 formation from H2 and O2 on Au3, Au4+, Au5, and Au5-. We find that H2, which interacts only weakly with the Au clusters, is dissociatively added across the Au-O bond, upon interaction with AunO2. One H atom is captured by the adsorbed O2 to form the hydroperoxy intermediate (OOH), while the other H atom is captured by the Au atom. Once formed, the hydroperoxy intermediate acts as a precursor for the closed-loop catalytic cycle. An important common feature of all the pathways is that the rate-determining step of the catalytic cycle is the second H2 addition to form H2O2. The H2O2 desorption is followed by O2 addition to AunH2 to form the hydroperoxy intermediate, thus leading to the closure of the cycle. On the basis of the Gibbs free energy of activation, out of these four clusters, Au4+ is most active for the formation of the H2O2. The 0 K electronic energy of activation and the DeltaGact at the standard conditions are 12.6 and 16.6 kcal/mol respectively. The natural bond orbital charge analysis suggests that the Au clusters remain positively charged (oxidic) in almost all the stages of the cycle. This is interesting in the context of the recent experimental evidence for the activity of cationic Au in CO oxidation and water-gas shift catalysts. We have also found preliminary evidence for a correlation between the activation barrier for the first H2 addition and the O2 binding energy on the Au cluster. It suggests that the minimum activation barrier for the first H2 addition is expected for the Au clusters with 7.0-9.0 kcal/mol O2 binding energy, i.e., in the midrange of the expected interaction energy. This represents a balance between more favorable H2 dissociation when the Aun-O2 interaction is weaker and high O2 coverage when the interaction is stronger. On the basis of this work, we predict that the hydroperoxy intermediate formation can be both thermodynamically and kinetically viable only in a narrow range of the O2 binding energy (10.0-12.0 kcal/mol)-a useful estimate for computationally screening Au-cluster-based catalysts. We also show that a competitive channel for the OOH desorption exists. Thus, in propylene epoxidation both OOH radicals and H2O2 can attack the active Ti in/on the Au/TS-1 and generate the Ti-OOH sites, which can convert propylene to propylene oxide.  相似文献   

8.
Kinetic studies show that the reaction of [TpIr(CO)2] (1, Tp = hydrotris(pyrazolyl)borate) with water to give [TpIr(CO2H)(CO)H] (2) is second order (k = 1.65 x 10(-4) dm(3) mol(-1) s(-1), 25 degrees C, MeCN) with activation parameters DeltaH++= 46+/-2 kJ mol(-1) and DeltaS++ = -162+/-5 J K(-1) mol(-1). A kinetic isotope effect of k(H2O)/k(D2O) = 1.40 at 20 degrees C indicates that O-H/D bond cleavage is involved in the rate-determining step. Despite being more electron rich than 1, [Tp*Ir(CO)2] (1*, Tp* = hydrotris(3,5-dimethylpyrazolyl)borate) reacts rapidly with adventitious water to give [Tp*Ir(CO2H)(CO)H] (2*). A proposed mechanism consistent with the relative reactivity of 1 and 1* involves initial protonation of Ir(I) followed by nucleophilic attack on a carbonyl ligand. An X-ray crystal structure of 2* shows dimer formation via pairwise H-bonding interactions of hydroxycarbonyl ligands (r(O...O) 2.65 A). Complex 2* is thermally stable but (like 2) is amphoteric, undergoing dehydroxylation with acid to give [Tp*Ir(CO)2H]+ (3*) and decarboxylation with OH- to give [TpIr(CO)H2] (4*). Complex 2 undergoes thermal decarboxylation above ca. 50 degrees C to give [TpIr(CO)H2] (4) in a first-order process with activation parameters DeltaH++ = 115+/-4 kJ mol(-1) and DeltaS++ = 60+/-10 J K(-1) mol(-1).  相似文献   

9.
Layers of glassy methanolic (aqueous) solutions of KHCO3 and HCl were deposited sequentially at 78 K on a CsI window, and their reaction on heating in vacuo in steps from 78 to 230 K was followed by Fourier transform infrared (FTIR) spectroscopy. After removal of solvent and excess HCl, IR spectra revealed formation of two distinct states of amorphous carbonic acid (H2CO3), depending on whether KHCO3 and HCl had been dissolved in methanol or in water, and of their phase transition to either crystalline alpha- or beta-H2CO3. The main spectral features in the IR spectra of alpha- and beta-H2CO3 are observable already in those of the two amorphous H2CO3 forms. This indicates that H-bond connectivity or conformational state in the two crystalline phases is on the whole already developed in the two amorphous forms. The amorphous nature of the precursors to the two crystalline polymorphs is confirmed using powder X-ray diffraction. These diffractograms also show that alpha- and beta-amorphous H2CO3 are two distinct structural states. The variety of structural motifs found within a few kJ/mol in a computational search for possible crystal structures provides a plausible rationalization for (a) the observation of more than one amorphous form and (b) the retention of the motif observed in the amorphous form in the corresponding crystalline form. The polyamorphism inferred for carbonic acid from our FTIR spectroscopic and powder X-ray diffraction studies is special since two different crystalline states are linked to two distinct amorphous states. We surmise that the two amorphous states of H2CO3 are connected by a first-order-like phase transition.  相似文献   

10.
We study low temperature reactivity of methylamine (CH3NH2) and carbon dioxide (CO2) mixed within different ratios, using FTIR spectroscopy and mass spectrometry. We report experimental evidence that the methylammonium methylcarbamate [CH3NH3(+)][C3NHCO2(-)] and methylcarbamic acid (CH3NHCOOH) are formed when the initial mixture CH3NH2:CO2 is warmed up to temperatures above 40 K. An excess of CH3NH2 favors the carbamate formation while an excess of CO2 leads to a mixture of both methylammonium methylcarbamate and methylcarbamic acid. Quantum calculations show that methylcarbamic acid molecules are associated into centrosymmetric dimers. Above 230 K, the carbamate breaks down into CH3NH2 and CH3NHCOOH, then this latter dissociates into CH3NH2 and CO2. After 260 K, it remains on the substrate a solid residue made of a well-organized structure coming from the association between the remaining methylcarbamic acid dimers. This study shows that amines can react at low temperature in interstellar ices rich in carbon dioxide which are a privileged place of complex molecules formation, before being later released into "hot core" regions.  相似文献   

11.
The B3LYP, M06, M06L, M062X, MPW1K, and PBE1PBE DFT methods were evaluated for modeling nickel-catalyzed coupling reactions. The reaction consists of a nucleophilic attack by a carbanion equivalent on the nickel complex, S(N)2 attack by the anionic nickel complex on an alkyl halide, and reductive elimination of the coupled alkane product, regenerating the nickel catalyst. On the basis of CCSD(T)//DFT single-point energies, the B3LYP, M06, and PBE1PBE functionals were judged to generate the best ground state geometries. M06 energies are generally comparable or superior to B3LYP and PBE1PBE energies for transition state calculations. The MP2 and CCSD methods were also evaluated for single-point energies at the M06 geometries. The rate-determining step of this reaction was found to be nucleophilic attack of a L(2)NiR anion on the alkyl halide.  相似文献   

12.
The effects of vitamin K homologues (K1, K2 and K3) on lipid peroxidation of lecithin liposomes induced by ascorbic acid and ferrous ion were examined. Ubiquinone-10 (UQ-10) was used as a reference in evaluation of the effectiveness of these vitamins. The lipid peroxidation was assessed by measurements of thiobarbituric acid-reactive substance (TBARS) and conjugated diene formation during the reaction. Among them, vitamins K1 and K2 inhibited the lipid peroxidation, as did UQ-10, with the order of effectiveness: UQ-10 greater than K2 greater than K1. By contrast, vitamin K3 had no inhibitory effect on ascorbic acid/Fe(2+)-induced lipid peroxidation of the liposomes. The inhibitory effect of vitamins K1 and K2 appeared only when these vitamins were incorporated into the liposomes by sonication. Simple mixing of the liposomes with these vitamins or with UQ-10 did not inhibit peroxidation of the liposomes even at high concentrations. From measurements of nitroblue tetrazolium reduction and p-nitrosodimethylaniline bleaching of vitamin K1- or K2-incorporated liposomes in the presence of ascorbic acid/Fe2+, it was found that these vitamins prevent the formation of hydroxyl radicals, not superoxide anions, during the peroxidation reaction. However, the degree of ascorbic acid/Fe(2+)-induced TBARS formation of the liposomes was not inhibited by the addition of mannitol to the reaction mixture. From these results, it is suggested that the inhibitory effect of these vitamins is mainly involved in termination of radical-chain reaction. Experimental results using several radical scavengers and/or antioxidants supported this interpretation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
余长春  路勇 《分子催化》1997,11(4):261-267
报道了用脉冲反应研究Ni/Al2O3催化剂上CH4/CO2重整反应的结果。脉冲反应显示,在还原的Ni/Al2O3催化剂上,CH4在673K就开始发生分解,并有C2H6、C2H4生成,1023K下,CH4几乎完全分解,单纯的CO2则很难在还原的催化剂上发生反应,在973K以上的高温下才会有少量C胜成CO.CHCO2的脉冲反应表明,当CH4在较低温度下开始分解时,CO2也会发生分解,并生成CO。脉冲反  相似文献   

15.
Heme oxygenase (HO) catalyzes the O(2)- and NADPH-cytochrome P450 reductase-dependent conversion of heme to biliverdin, Fe, and CO through a process in which the heme participates both as a prosthetic group and as a substrate. In the present study, we have generated a detailed reaction cycle for the first monooxygenation step of HO catalysis, conversion of the heme to alpha-meso-hydroxyheme. We employed EPR (using both (16)O(2) and (17)O(2)) and (1)H, (14)N ENDOR spectroscopies to characterize the intermediates generated by 77 K radiolytic cryoreduction and subsequent annealing of wild-type oxy-HO and D140A, F mutants. One-electron cryoreduction of oxy-HO yields a hydroperoxoferri-HO with g-tensor, g = [2.37, 2.187, 1.924]. Annealing of this species to 200 K is accompanied by spectroscopic changes that include the appearance of a new (1)H ENDOR signal, reflecting rearrangements in the active site. Kinetic measurements at 214 K reveal that the annealed hydroperoxoferri-HO species, denoted R, generates the ferri-alpha-meso-hydroxyheme product in a first-order reaction. Disruption of the H-bonding network within the distal pocket of HO by the alanine and phenylalanine mutations of residue D140 prevents product formation. The hydroperoxoferri-HO (D140A) instead undergoes heterolytic cleavage of the O-O bond, ultimately yielding an EPR-silent compound II-like species that does not form product. These results, which agree with earlier suggestions, establish that hydroperoxoferri-HO is indeed the reactive species, directly forming the alpha-meso-hydroxyheme product by attack of the distal OH of the hydroperoxo moiety at the heme alpha-carbon.  相似文献   

16.
The reduction of chromium, nickel, and manganese oxides by hydrogen, CO, CH4, and model syngas (mixtures of CO + H2 or H2 + CO + CO2) and oxidation by water vapor has been studied from the thermodynamic and chemical equilibrium point of view. Attention was concentrated not only on the convenient conditions for reduction of the relevant oxides to metals or lower oxides at temperatures in the range 400–1000 K, but also on the possible formation of soot, carbides, and carbonates as precursors for the carbon monoxide and carbon dioxide formation in the steam oxidation step. Reduction of very stable Cr2O3 to metallic Cr by hydrogen or CO at temperatures of 400–1000 K is thermodynamically excluded. Reduction of nickel oxide (NiO) and manganese oxide (Mn3O4) by hydrogen or CO at such temperatures is feasible. The oxidation of MnO and Ni by steam and simultaneous production of hydrogen at temperatures between 400 and 1000 K is a difficult step from the thermodynamics viewpoint. Assuming the Ni—NiO system, the formation of nickel aluminum spinel could be used to increase the equilibrium hydrogen yield, thus, enabling the hydrogen production via looping redox process. The equilibrium hydrogen yield under the conditions of steam oxidation of the Ni—NiO system is, however, substantially lower than that for the Fe—Fe3O4 system. The system comprising nickel ferrite seems to be unsuitable for cyclic redox processes. Under strongly reducing conditions, at high CO concentrations/partial pressures, formation of nickel carbide (Ni3C) is thermodynamically favored. Pressurized conditions during the reduction step with CO/CO2 containing gases enhance the formation of soot and carbon-containing compounds such as carbides and/or carbonates.  相似文献   

17.
Meta-cleavage product (MCP) hydrolases are members of the α/β-hydrolase superfamily that utilize a Ser-His-Asp triad to catalyze the hydrolysis of a C-C bond. BphD, the MCP hydrolase from the biphenyl degradation pathway, hydrolyzes 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) to 2-hydroxypenta-2,4-dienoic acid (HPD) and benzoate. A 1.6 ? resolution crystal structure of BphD H265Q incubated with HOPDA revealed that the enzyme's catalytic serine was benzoylated. The acyl-enzyme is stabilized by hydrogen bonding from the amide backbone of 'oxyanion hole' residues, consistent with formation of a tetrahedral oxyanion during nucleophilic attack by Ser112. Chemical quench and mass spectrometry studies substantiated the formation and decay of a Ser112-benzoyl species in wild-type BphD on a time scale consistent with turnover and incorporation of a single equivalent of (18)O into the benzoate produced during hydrolysis in H(2)(18)O. Rapid-scanning kinetic studies indicated that the catalytic histidine contributes to the rate of acylation by only an order of magnitude, but affects the rate of deacylation by over 5 orders of magnitude. The orange-colored catalytic intermediate, ES(red), previously detected in the wild-type enzyme and proposed herein to be a carbanion, was not observed during hydrolysis by H265Q. In the newly proposed mechanism, the carbanion abstracts a proton from Ser112, thereby completing tautomerization and generating a serinate for nucleophilic attack on the C6-carbonyl. Finally, quantification of an observed pre-steady-state kinetic burst suggests that BphD is a half-site reactive enzyme. While the updated catalytic mechanism shares features with the serine proteases, MCP hydrolase-specific chemistry highlights the versatility of the Ser-His-Asp triad.  相似文献   

18.
Peroxynitrite (ONOO-/ONOOH) is assumed to react preferentially with carbon dioxide in vivo to produce nitrogen dioxide (NO2*) and trioxocarbonate(1-) (CO3*-) radicals. We have studied the mechanism by which glutathione (GSH) inhibits the NO2*/CO3*--mediated formation of 3-nitrotyrosine. We found that even low concentrations of GSH strongly inhibit peroxynitrite-dependent tyrosine consumption (IC50 = 660 microM) as well as 3-nitrotyrosine formation (IC50) = 265 microM). From the determination of the level of oxygen produced or consumed under various initial conditions, it is inferred that GSH inhibits peroxynitrite-induced tyrosine consumption by re-reducing (repairing) the intermediate tyrosyl radicals. An additional protective pathway is mediated by the glutathiyl radical (GS*) through reduction of dioxygen to superoxide (O2*-) and reaction with NO2* to form peroxynitrate (O2NOOH/O2NOO-), which is largely unreactive towards tyrosine. Thus, GSH is highly effective in protecting tyrosine against an attack by peroxynitrite in the presence of CO2. Consequently, formation of 3-nitrotyrosine by freely diffusing NO2* radicals is highly unlikely at physiological levels of GSH.  相似文献   

19.
There has been some speculation that the C-6 position in UMP may be unusually acidic, stabilizing a carbanion that is generated at this position during OMP decarboxylation. On the basis of the rate of OH- catalyzed deuterium exchange at elevated temperatures we estimate that the pKa value for ionization at C-6 of dimethyl uracil is 34 +/- 2 in water. The same method yields a value of 37 +/- 2 for ionization at C-2 of thiophene in good agreement with the value determined by polarographic methods. The barrier to proton release (46 kcal/mol) is even higher than that for CO2 release from orotic acid derivatives.  相似文献   

20.
The anions [ReX3(CO)2(NO)]- (with X = Cl, 1; X = Br, 2) have been prepared with different counterions. Complex 1 was found to lose its chloride ligands in water within 24 h. The [Re(H2O)3(CO)2(NO)]2+ cation obtained after hydrolysis is a strong acid, which consequently undergoes a slow condensation reaction in water to form the very stable [Re(mu3-O)(CO)2(NO)]4 cluster 4 at pH > 2, that precipitates from the aqueous solution and is insoluble also in organic solvents. Fast deprotonation of [Re(H2O)3(CO)2(NO)]2+ did not lead to 4 but rather to the mononuclear species [Re(OH)(H2O)2(CO)2(NO)]+. Subsequent attack of OH- at a CO group resulted in the formation of a rhenacarboxylic acid and its carboxylate anion. For solutions of even higher pH, IR spectroscopy provided evidence for the formation of a Re(C(O)ON(O)) species. These processes were found to be reversible on lowering the pH. Starting from cluster 4 it was possible to obtain complexes of the types [ReX(CO)2(NO)L2] or [Re(CO)2(NO)L3](L2 = 2-picolinate, 2,2'-bipyridine, L-phenylalanate; L3 = tris(pyrazolyl)methane, 1,4,7-trithiacyclononane) in the presence of an acid in protic solvents, but only in low yields. In further synthetic studies, complexes 1 and 2 were found to be superior starting materials for substitution reactions to form [ReX(CO)2(NO)L2] or [Re(CO)2(NO)L3] complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号