首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Continuous radio-frequency (rf) irradiation during decoupling and spin-lock periods in NMR pulse sequences may lead to undesired sample heating. Heat-sensitive samples can suffer damage from the sudden temperature rise which cannot be adequately compensated by the temperature control system. Moreover, as the heating is spatially inhomogeneous, higher temperature increases can arise locally than are indicated by the average increase detected by the temperature controller. In this work we present a technique that allows measurement of a real-time 2D-image of the temperature distribution inside an NMR sample during an experiment involving rf-heating. NMR imaging methods have previously been used to project the temperature distribution inside an NMR sample onto a single spatial axis or to acquire steady-state 2D- temperature distributions. The real-time 2D-temperature profiles obtained with our procedure provide much more detailed data. Our results show, that not only inhomogeneous heating but also inhomogeneous sample cooling contribute to the build-up of temperature gradients across the sample. The technique can be used to visualize rf-heating in order to protect sensitive samples and to experimentally test new coil geometries or to guide probehead design.  相似文献   

2.
 设计了4种Bridgman压砧内加热方式,尝试了钽和石墨作为加热材料,采用双热电偶测温,分别测量了不同加热方式的样品中部和上部温度与输入电压的关系,并粗略地讨论了样品的温度梯度。在0.1 GPa压力下,样品温度达到1 300 ℃以上。另外,在5.0 GPa高压下、1 000 ℃范围内测量了样品温度随输入电压变化的曲线。  相似文献   

3.
The implementation of a heating element to a composite gasket for high-temperature applications in the diamond-anvil cell was developed based on a double-gasket assemblage. The heating element is a thin platinum wall that covers the central borehole of the metal–ceramic–metal composite gasket and interconnects the two metal component parts of the gasket. Applying electric powers up to 35 W to the two gasket metal components result in ring-like heating around the sample inside the pressure chamber with temperatures exceeding ~2000 K in individual cases. The ring-like distribution of the maximum temperature located at the pressure-chamber wall facilitates a homogeneous temperature distribution at the sample position. As a consequence of the concentration of the heating power to the pressure chamber region, gradients of surface temperatures, both at the gasket and the diamond anvil, appear to be more pronounced compared with those known for classical external electrical heating. Apart from the tests of the mechanical stability on high-pressure operation in the diamond anvil cell at room temperature, the influence of the anvils in contact with the gasket on the characteristic power–temperature curves, temperature gradients and thermal equilibration resulting from changes in electrical power settings have been evaluated within the scope of a series of experimental investigations.  相似文献   

4.
This paper shows the influence of horizontal and vertical temperature gradients on the intensity of vertical vortices, qualitatively similar to dust devils, generated by a convective instability in a cylindrical annulus non-homogeneously heated. The behavior of the vortices formed is studied, showing that the increase of the temperature gradients intensifies the strength of the vortical structures developed and vice versa, small horizontal and vertical temperature gradients lead to weaker vortices or even make them disappear. Consequently, the intensity of the vortices can be controlled thermally by cooling or heating adequately the bottom boundary.  相似文献   

5.
Intense sample heating through high-speed magic-angle spinning (MAS; up to 58 K temperature difference) is demonstrated. The role of probehead and spinner design, as well as that of the temperature of the bearing air on the heating of a rotating sample, is examined. MAS-induced heating can affect the accurate determination of the isotropic value of the chemical shift as well as the principal values, asymmetry and anisotropy parameters of the chemical shift tensor. In some cases, a very large temperature gradient (12 K) within the fast rotating sample was found, which may limit the resolution of high-speed 1H MAS nuclear magnetic resonance (NMR) spectra.  相似文献   

6.
To study phase transition kinetics on submillisecond time scale a sensitive ultrafast nanocalorimeter was constructed. Controlled ultrafast cooling, as well as heating, up to 106K/s was attained. The method was applied for the measurements of the superheating phenomenon in a set of linear polymers: iPS, PBT, PET, and iPP. A power law relation between the superheating and the heating rate holds in the heating rate range 10-2-104K/s. A limiting superheating of about 10% of the melting temperature was observed at rates above 104-105K/s. This limit depends on annealing conditions before sample melting. The observed superheating limit, as well as the power law, can be accounted for the internal stresses near the crystalline amorphous interface in semicrystalline polymers induced by heating, which are related to the thermal expansion gradients inherent in a semicrystalline material.  相似文献   

7.
Pulse heating of high-current contacts is notable for the presence of considerable temperature gradients in the contact area, which cause the Thomson effect—the appearance of thermoelectric currents. The amount of this effect against conventional Joule heat release is quantitatively estimated. Pulse heating of electrical contacts is numerically simulated with the use of the Comsol program package. It is demonstrated that thermoelectric currents make a negligible contribution to heating in the case of copper contacts.  相似文献   

8.
Sample instability during solid-state NMR experiments frequently arises due to RF heating in aligned samples of hydrated lipid bilayers. A new, simple approach for estimating sample temperature is used to show that, at 9.4 T, sample heating depends mostly on (1)H decoupling power rather than on (15)N irradiation in PISEMA experiments. Such heating for different sample preparations, including lipid composition, salt concentration and hydration level was assessed and the hydration level was found to be the primary parameter correlated with sample heating. The contribution to RF heating from the dielectric loss appears to be dominant under our experimental conditions. The heat generated by a single scan was approximately calculated from the Q values of the probe, to be a 1.7 degrees C elevation per single pulse sequence iteration under typical sample conditions. The steady-state sample temperature during PISEMA experiments can be estimated based on the method presented here, which correlates the loss factor with the temperature rise induced by the RF heating of the sample.  相似文献   

9.
This paper describes a method for measuring the rate of convective flow in a liquid sample used for high-resolution NMR. The measurement is straightforward and achieves a clean separation of convection from other effects such as diffusion and relaxation. Convection results from temperature gradients within the sample, and it is shown how these can be measured with the aid of a simple chemical shift imaging experiment of a sample whose spectrum shows a strong and well characterized temperature dependence. The use of these two methods is illustrated by showing how the rate of convection and the temperature profile depend on the solvent, temperature, and gas flow rate of the temperature regulating system. It is also shown that broadband (13)C decoupling results in significant temperature gradients and associated convection.  相似文献   

10.
光谱发射率是表征材料热物理性能的重要参数。对于非导电材料的高温光谱发射率测试,一般采用高温加热炉加热或辐射加热的方式来进行发射率测试,存在的问题是采用高温石墨炉加热时,样品可能会与高温石墨发生化学反应,从而破坏材料原有物性;采用辐射加热,一般是单向静止加热,会存在样品温场梯度非均匀分布的问题。基于激光旋转加热和样品/黑体整体一体化设计,提出了一种“样品动中测”的非导电材料高温光谱发射率测试新方法,建立了相应的测量模型,突破了传统的 “样品静中测”的局限,样品与参考黑体共形一体化设计,采用微区域光谱辐射成像方法,同时测量参考黑体和样品的光谱辐射能量与温度。建立了激光旋转加热状态下的热传导方程,对典型样品材料的温度分布进行了仿真计算,结果表明旋转样品温场分布较为均匀,分析了温场分布与红外光谱发射率测量误差间的关系,给出了适用于本测试方法的材料的热导率下限值。基于该方法,搭建了相应的测量装置,对典型材料碳化硅在1 000 K时的光谱发射率进行了测试,在4 μm处对各个典型高温温度点的光谱发射率进行了测试,得到了碳化硅材料在红外波段的光谱发射率波长变化和温度变化规律特性。与国外的测量结果进行了比对,结果较为一致,验证了激光旋转加热光谱发射率测试方法的可行性。采用此方法,不破坏样品本身的理化特性,样品加热升温速度快,测量温度范围上限高,有效减小了激光静止单向加热带来的温度不均匀性,可同时测量出样品和参考黑体的光谱辐射亮度及温度,无需另外再设计标准高温黑体,解决了现有非导电材料高温光谱发射率测试中非均匀加热和辐射能量同步比对测量的问题,可应用于多种非导电材料高温光谱发射率的测试。  相似文献   

11.
Differential scanning calorimetry (DSC) analysis is a standard thermal analysis technique used to determine the phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy of phase change materials (PCMs). To determine the appropriate heating rate and sample mass, various DSC measurements were carried out using two kinds of PCMs, namely N-octadecane paraffin and calcium chloride hexahydrate. The variations in phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy were observed within applicable heating rates and sample masses. It was found that the phase transition temperature range increased with increasing heating rate and sample mass; while the heat of fusion varied without any established pattern. The specific heat decreased with the increase of heating rate and sample mass. For accuracy purpose, it is recommended that for PCMs with high thermal conductivity (e.g. hydrated salt) the focus will be on heating rate rather than sample mass.  相似文献   

12.
13.
In contrast to most infrared radiometry techniques used for nondestructive evaluation which follow the sample cooling after pulsed heating, the technique termed time-resolved infrared radiometry with step heating (TRIR) follows the surface temperature rise as a function of time during the heating pulse. This approach allows identification of subsurface features and determination of thermal properties with the same speed as other thermal techniques, but keeps the required heating power and resulting surface temperature small. This permits the use of heat sources such as microwaves and RF induction heating where high peak power is often not available. One of the most attractive features of the TRIR method is the ability to calibrate the temperature response early, when the sample is thermally-thick. This allows correction for inhomogeneous heat source distributions and differentiation between backing materials. A fast algorithm has been developed to calculate thermal transit times and therefore generate quantitative depth images of subsurface features. This paper will describe the TRIR approach and the analysis of its time response, including the calibration at early times. Examples will be described for laser heating on zirconia coatings, corroded aluminum, and graphite composites, and the use of microwaves and RF induction heating as heating sources.  相似文献   

14.
CARS is an effective non-intrusive technique for measuring gas temperature in combustion environments. In regions of high temperature gradient, however, the CARS signal is complicated by contributions from gas at different temperature. This paper examines theoretically the uncertainty associated with CARS thermometry in steep temperature gradients. In addition, the work compares the temperature predicted from CARS with the adiabatic mixed temperature of the gas resident in the measurement volume. This comparison helps indicate the maximum sample volume size allowed for accurate temperature measurements.  相似文献   

15.
Non-equilibrium heating in the lattice sub-system results in high temperature gradients in the surface region. This in turn causes thermal stress waves propagating into the substrate material. In the present study, a closed form solution for thermal stress developed in the substrate material due to volumetric pulse heating is presented. The stress free and stress continuity boundary conditions at the surface are incorporated in the closed form solutions. It is found that thermal stress wave is tensile in the surface region and it becomes compressive at some depth below the surface for stress free condition at the surface; however, it remains compressive for the condition of stress continuity at the surface.  相似文献   

16.
A theory of wafer heating during rapid thermal processing is presented. It is demonstrated that temperature uniformity is not only limited by radiation loss at the wafer edge in the stationary state but also influenced by transient effects during temperature ramping. Whereas a compensation of edge losses call for enhanced illumination intensities at the wafer periphery, the avoidance of transient temperature gradients would require uniform illumination. Calculations for various system configurations lead to optimized processing cycles and suggest possible improvements of RTP equipment.  相似文献   

17.
Thermophoresis depletes DNA from a heated spot. We quantify for the first time the thermal diffusion constant D(T)=0.4x10(-8) cm(2)/s K for DNA, using fluorescent dyes and laser heating. For 5 kB DNA we extrapolate a 1000-fold depletion from a temperature difference of 50 K. Surprisingly, convection generated by the same heating can turn the depletion into trapping of DNA. Trapped DNA can form point geometries 20 microm in diameter with more than 1000-fold enhanced concentrations. The accumulation is driven only by temperature gradients and offers a new approach to biological microfluidics and replicating systems in prebiotic evolution.  相似文献   

18.
The aim of this study is to determine the trap parameters (trap depth E, frequency factor s) of quartz using various heating rates method and also to investigate the effect of annealing temperature on determining trap depths. The method is based on the positions of the thermoluminescence peaks, obtained from the change in temperature of the peak at maximum caused by changing the heating rate at which the sample is measured. In the present work, powder quartz samples were annealed first at different temperatures before irradiation. Then samples irradiated to different doses were measured with a TL reader at different heating rates and the glow curves were recorded. In order to calculate the trap depth E and the frequency factor s, the glow parameter Tm was determined experimentally from the glow curve by measuring the shift of the maximum peak temperature depending on heating rate β. The calculation of trap parameters was repeated for each annealing temperature. Then the effect of annealing temperature on trap depths calculated by the various heating rates method was evaluated.  相似文献   

19.
Scanning thermal microscopy (SThM) is a scanning probe technique based on atomic force microscopy (AFM) enabling high-resolution topographical imaging together with visualization of the temperature distribution in the studied sample. For the thermal mapping, rather expensive, micro-fabricated cantilevers with integrated thermocouples have to be used. The spatial resolution is typically limited to 100 nm. Scanning Joule expansion microscopy (SJEM) uses an alternative approach to detect the temperature of the sample with a regular silicon cantilever and lock-in detection. By monitoring the thermal expansion of the sample (due to Joule heating), the local temperature can be monitored. The resolution of SJEM is comparable to that of contact AFM, which is an order of magnitude better than for SThM. Our research involves implementing a SJEM for the study of heating phenomena in mesoscopic structures prepared by electron beam lithography and lift-off techniques. In particular, we calibrated our SJEM in order to make quantitative temperature maps of the studied samples.  相似文献   

20.
近年来,固体核磁共振被广泛应用于膜蛋白、纤维化蛋白等体系的结构和功能研究.在固体核磁共振实验中,快速魔角旋转或高功率射频场照射等实验条件将导致样品发热.生物样品发热能导致严重的后果,例如样品温度的快速升高,信号分辨率、信噪比的降低,发热严重时甚至导致样品的不可逆损坏.近年来,人们对样品发热问题进行了一些研究,发现通过优化样品制备条件或固体核磁共振实验条件,以及改进探头设计等手段,可以在一定程度上减轻样品发热.该文主要综述了生物固体核磁共振研究中导致样品发热的原因和减轻样品发热的方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号