首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The vibrational spectra of σ-(C3H5)Mn(CO)5 are reported. Assignment of bands is made and carbonyl force constants are calculated. The results indicate that the Mn(CO)5 moiety has C symmetry. The calculated angle between the axial and equatorial carbonyl groups is approximately 95°. The bonding in this compound is very similar to that in (CH3)Mn(CO)5.

In the far-infrared region, seven bands are expected in C symmetry (3A1 + 4E), and all are observed.  相似文献   


2.
The compounds (π-C5H5)(CO)2LM-X (L = CO, PR3; M = Mo, W; X = BF4, PF6, AsF6, SbF6) react with H2S, p-MeC6H4SH, Ph2S and Ph2SO(L′) to give ionic complexes [(π-C5H5)(CO)2LML′]+ X. Also sulfur-bridged complexes, [(π-C5H5)(CO)3W---SH---W(CO)3(π-C5H5)]+ AsF6 and [(π-C5H5)(CO)3M-μ-S2C=NCH2Ph-M(CO)3(π-C5H5)], have been obtained. Reactions with SO2 and CS2 have been examined.  相似文献   

3.
The reaction of Ag2O with pybz (pybz=4-(4-pyridyl)benzoate) gave the monomer compound [Ag(pycz)(H2O)], 1. Using 4,4′-bipyridyl (bpy) as a spacer to increase the length of the monomer resulted in the nanosized molecular chain compound [Ag2(pybz)2(bpy)], 2. In 1, two monomers [Ag(pycz)(H2O)] are combined together through Agπ, ππ and Ag(CC) interactions to form a dimer, with the distances of 3.34, 3.56 and 3.18 Å, respectively. In 2, the [Ag2(pybz)2(bpy)] units are held together via ππ (3.4–3.5 Å) interactions resulting in a 3D network with 1D open channels.  相似文献   

4.
A series of luminescent rhenium(I) monoynyl complexes, [Re(N---N)(CO)3(CC---R)] (N---N=bpy, tBu2bpy; R=C6H5, C6H4---Cl-4, C6H4---OCH3-4, C6H4---C8H17-4, C6H4---C6H5, C8H17, C4H3S, C4H2S---C4H3S, C5H4N), together with their homo- and hetero-metallic binuclear complexes, {Re(N---N)(CO)3(CC---C5H4N)[M]} (N---N=bpy, tBu2bpy; [M]=[Re{(CF3)2-bpy}(CO)3]ClO4, [Re(NO2-phen)(CO)3]ClO4, W(CO)5) have been synthesized and their electrochemical and photoluminescence behaviors determined. The structural characterization and electronic structures of selected complexes have also been studied. The luminescence origin of the rhenium(I) alkynyl complexes has been assigned as derived states of a [dπ(Re)→π*(N---N)] metal-to-ligand charge transfer (MLCT) origin mixed with a [π(CCR)→π*(N---N)] ligand-to-ligand charge transfer (LLCT) character. The assignments are further supported by extended Hückel molecular orbital (EHMO) calculations, which show that the LUMO mainly consists of π*(N---N) character while the HOMO is dominated by the antibonding character of the Re---CCR moiety resulted from the overlap of the dπ(Re) and π(CCR) orbitals.  相似文献   

5.
The T1,2 ← S0 spectra of benzaldehydes have been studied as a function of the energy separation between the vibrationless levels. It is shown that the spectra are very complicated in the region of ΔE[T20(nπ*)-T10(ππ*)] = 250–400 cm−1, reflecting effective vibronic interferences between T20(0-0) and each of the ν3633 out-of-plane vibrational levels of T10(ππ*). The simulated spectra correspond to the observed spectra. In the case of T10 = 3* and T20 = 3ππ* the spectral change is not so drastic as in the reverse case loc. cit. because the optical intensity generally concentrates in the longest wavelength band, i.e., the origin band of the T1(nπ*) ← S0 transition. The simulation spectra are useful for interpretation of the absorption spectra in similar electronic structure systems of substituted benzaldehydes.  相似文献   

6.
The reactions of the diruthenium carbonyl complexes [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]X (X=BF4 (1a) or PF6 (1b)) with neutral or anionic bidentate ligands (L,L) afford a series of the diruthenium bridging carbonyl complexes [Ru2(μ-dppm)2(μ-CO)22-(L,L))2]Xn ((L,L)=acetate (O2CMe), 2,2′-bipyridine (bpy), acetylacetonate (acac), 8-quinolinolate (quin); n=0, 1, 2). Apparently with coordination of the bidentate ligands, the bound acetate ligand of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ either migrates within the same complex or into a different one, or is simply replaced. The reaction of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ (1) with 2,2′-bipyridine produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)2] (2), [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-bpy)]+ (3), and [Ru2(μ-dppm)2(μ-CO)22-bpy)2]2+ (4). Alternatively compound 2 can be prepared from the reaction of 1a with MeCO2H–Et3N, while compound 4 can be obtained from the reaction of 3 with bpy. The reaction of 1b with acetylacetone–Et3N produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-acac)] (5) and [Ru2(μ-dppm)2(μ-CO)22-acac)2] (6). Compound 2 can also react with acetylacetone–Et3N to produce 6. Surprisingly [Ru2(μ-dppm)2(μ-CO)22-quin)2] (7) was obtained stereospecifically as the only one product from the reaction of 1b with 8-quinolinol–Et3N. The structure of 7 has been established by X-ray crystallography and found to adopt a cis geometry. Further, the stereospecific reaction is probably caused by the second-sphere π–π face-to-face stacking interactions between the phenyl rings of dppm and the electron-deficient six-membered ring moiety of the bound quinolinate (i.e. the N-included six-membered ring) in 7. The presence of such interactions is indeed supported by an observed charge-transfer band in a UV–vis spectrum.  相似文献   

7.
The reaction between Ru3(CO)12 and a cyclic olefin (cis-cyclooctene or trans-cyclododecene) at 100 °C for several hours gives the title compounds (μ-H)2RU3(CO)932-C8H12) (1), and (μ-H)RU3(CO)933-C12H19) (2), both of which have been characterized by X-ray diffraction studies, IR and NMR spectral measurements and elemental analysis. The prolonged reaction between Ru3(CO)12 and cis-cyclooctene gives compound HRu3(CO)9(C8H11) (3). Compound 3 has been characterized with IR and NMR spectral analyses. In 1 the cyclooctene ring is linked via a μ32-alkyne type of bonding to the face of the Ru3 cluster. It is formally σ-bonded to two of the three Ru atoms and π-bonded to the third Ru. The two hydrides in 1 are bridging Ru---Ru bonds. In 2 the cyclododecene ring is bonded to the Ru3 face via the μ33-CCHC linkage. There are two formal σ-bonds from the allyl part to the hydrido-bridged Ru atoms and the η3-allyl linkage to the third Ru atom.  相似文献   

8.
Irradiation of the 30-electron Mo25-C5Me5)2(CO)4 and Re2(CO)10 in toluene solution (containing H2O) afforded (in 1–2% yields) a novel triangular metal cluster, (η5-C5Me5)3Mo3(CO)42-H)(η3-O) (1), which was characterized by a single-crystal X-ray diffraction study. Compound 1, of pseudo Cs-m symmetry, has a triangulo-Mo33-O) core with composite Mo---H---Mo and Mo---Mo electron-pair bonds along one unusually short edge (2.660(1) Å) and Mo--- electron-pair bonds along the other two edges (2.916(1) and 2.917(1) Å). The edge-bridged hydride ligand, which displays a characteristic high-field proton NMR resonance at δ −17.79 ppm, was not found from the crystallographic determination but was located via a quantitative potential-energy-minimization method. This procedure unambiguously established that the optimized hydrogen position, which corresponds to a distinct coordination site with identical Mo---H distances of 1.85 Å, is the only one that can be sterically occupied by a metal-bound hydride ligand. This 46-electron species is the first electron-deficient trimolybdenum cluster containing a monoprotonated Mo---Mo double bond; its existence is attributed to ligand overcrowding due to the bulky pentamethylcyclopentadienyl rings. Black (η5- C5Me5)3Mo3(CO)42-H)(η3-O) · 1/2THF crystallizes with two formula species in a triclinic unit cell of P1 symmetry with a 8.603(4), b 11.115(4), c 19.412(11) Å, 80.69(4)°, β 101.10(4)°, and γ 98.88(3)° at −40° C. Least-squares refinement (RAELS with 221 variables) of one independent Mo3 molecule and a centrosymmetrically-disordered THF molecule converged at R1(F) 5.62%, R2(F 6.88% for 8460 independent diffractometry data (I0 ρ 3σ(I0 collected at −40° C with Mo-K radiation  相似文献   

9.
The compound [RU332- -ampy)(μ3η12-PhC=CHPh)(CO)6(PPh3)2] (1) (ampy = 2-amino-6-methylpyridinate) has been prepared by reaction of [RU3(η-H)(μ32- ampy) (μ,η12-PhC=CHPh)(CO)7(PPh3)] with triphenylphosphine at room temperature. However, the reaction of [RU3(μ-H)(μ3, η2 -ampy)(CO)7(PPh3)2] with diphenylacetylene requires a higher temperature (110°C) and does not give complex 1 but the phenyl derivative [RU332-ampy)(μ,η 12 -PhC=CHPh)(μ,-PPh2)(Ph)(CO)5(PPh3)] (2). The thermolysis of complex 1 (110°C) also gives complex 2 quantitatively. Both 1 and 2 have been characterized by0 X-ray diffraction methods. Complex 1 is a catalyst precursor for the homogeneous hydrogenation of diphenylacetylene to a mixture of cis- and trans -stilbene under mild conditions (80°C, 1 atm. of H2), although progressive deactivation of the catalytic species is observed. The dihydride [RU3(μ-H)232-ampy)(μ,η12- PhC=CHPh)(CO)5(PPh3)2] (3), which has been characterized spectroscopically, is an intermediate in the catalytic hydrogenation reaction.  相似文献   

10.
The one-pot reaction between the novel proton transfer compound (pydaH2)2+(phendc)2−, LH2, and Cu(II) afforded the compounds (pydaH)2[Cu(phendc)2]·10H2O, 1, and (pydaH)2[Cu(phendc)(phendcH)]2·5H2O, 2, where pyda=2,6-diaminopyridine, and phendcH2=1,10-phenanthroline-2,9-dicarboxylic acid. The single crystal X-ray diffraction analysis of 1 and 2 revealed that these are two novel self-assembled 3D Cu(II) complex-organo-networks, in which (pydaH)+ ions and [Cu(phendc)2]2− or complex units are held together by ion pairing, H-bonding, and π–π interactions. Magnetic measurements over the temperature range 1.8–310 K revealed no significant magnetic coupling between Cu(II) centers in 1 or 2.  相似文献   

11.
The nucleophilicity of the bridging atom of the selenium complex (μ-Se)[(η5-C5H5)Fe(CO)2]2 (1) has been demonstrated by addition of the complex cation [(η5-C5H5)Fe(CO)2]+: Reaction of 1 with the ionic complex [(η5-C5H5)Fe(CO)2-(THF)][BF4] cleanly yields the ionic trinuclear complex [(μ3-Se)(η5-C5H5)-Fe(CO)23][BF4] (3). This addition reaction converts the bridging selenium atom from a bent FeSeFe structure into a flattened Fe3Se pyramid (X-ray diffraction studies), without significant changes in the iron-selenium bond lengths (244.9(<1) pm and 242.7(1)/243.3(1)/244.8(1) pm, respectively). These bonds are considered to be single bonds in accord with the EAN rule.  相似文献   

12.
Treatment of CpZrCl3 with 3-methylbutenyl-Grignard reagent yields thermally labile tris(1,1-dimethylallyl) ZrCp (6), which is slowly decomposed (5d) at −15°C to give (η-cyclopentadienyl)(η3-1,1-dimethylallyl)(η4-isoprene)zirconium (7), which is thermally unstable; with a half-live of 43 h at 20°C it rearranges to the η3-1,2-dimethylallyl isomer and an (isoprene) zirconium hydride is proposed as the intermediate for this hydrogen-migration reaction.  相似文献   

13.
To examine the steric effects on the stability of Ln(0) π-arene compounds, molecular mechanics (MMP2) calculations are performed on Gd(η-C6H6)2 and Ln(η-But3C6H3)2 (where Ln is Gd, Yb and Y ). The small potential-well depth ( ≈ 2 kcal mol−1) and the large Gd-C equilibrium distance ( > 3.3 Å) explains the instability of Gd(η-C6H6)2, while the difference in the stability between Gd(η-But3C6H3)2 and Yb(η-But3C6H3)2 can be attributed to the difference in the van der Waalsradii of the two metals and the more contracted 5d orbitals on the Yb atom.  相似文献   

14.
The neutral nitrogen-bidentate ligand, diphenylbis(3,5-dimethylpyrazol-1-yl)methane, Ph2CPz′2, can readily be obtained by the reaction of Ph2CCl2 with excess HPz′ in a mixed-solvent system of toluene and triethylamine. It reacts with [Mo(CO)6] in 1,2-dimethoxyethane to give the η2-arene complex, [Mo(Ph2CPz′2)(CO)3] (1). This η2-ligation appears to stabilize the coordination of Ph2CPz′ 2 in forming [Mo(Ph2CPz′2)(CO)2(N2C6H4NO2-p)][BPh4] (2) and [Mo(Ph2CPz′2)(CO)2(N2Ph)] [BF4] (3) from the reaction of 1 with the appropriate diazonium salt but the stabilization seems not strong enough when [Mo{P(OMe)3} 3(CO)3] is formed from the reaction of 1 with P(OMe)3. The solid-state structures of 1 and 3 have been determined by X-ray crystallography: 1-CH2Cl2, monoclinic, P21/n, a = 11.814(3), b = 11.7929(12), c = 19.46 0(6) Å, β = 95.605(24)°, V = 2698.2(11) Å3, Z = 4, Dcalc = 1.530 g/cm3 , R = 0.044, Rw = 0.036 based on 3218 reflections with I > 2σ(I); 2 (3)-1/2 hexane-1/2 CH3OH-1/2 H2O-1 CH2Cl2, monoclinic, C2/c, a = 41.766(10), b = 20.518(4), c = 16.784(3) Å, β = 101.871(18)°, V = 14076(5) Å3, Z = 8, Dcalc = 1.457 g/cm3, R = 0.064, Rw = 0.059 based on 5865 reflections with I > 2σ(I). Two independent cations were found in the asymmetric unit of the crystals of 3. The average distance between the Mo and the two η2-ligated carbon atoms is 2.574 Å in 1 and 2.581 and 2.608 Å in 3. The unfavourable disposition of the η2-phenyl group with respect to the metal centre in 3 and the rigidity of the η2-arene ligation excludes the possibility of any appreciable agostic C---H → Mo interaction.  相似文献   

15.
A comprehensive set of theoretical Coster–Kronig and fluorescence yields are presented for atomic numbers 18≤Z≤100. These quantities are based on ab initio relativistic calculations. Agreement with experimental values is fair for ω1 and generally good for ω2, ω3 (Z≥54) [1]. Therefore, atomic L shell fluorescence (ω1, ω2, ω3) and Auger yields (a1, a2 and a3) for some elements in the atomic number range 59≤Z≤85 were determined. These selected measured semi-empirical values were also fitted by least squares to polynomials in the Z of the form ∑nanZn and compared with theoretical and with earlier fitted values.  相似文献   

16.
Carnosine (β-alanyl-L-histidine) is a biologically active molecule involved in muscular metabolism. It crystallises in the C; space group with a = 24.725 Å b = 5,427 Å c = 8,004 Å β = 100,2° (Z = 4)

In the crystal, acid and basic groups are engaged in hydrogen bonds whose strength is evaluated through IR frequencies. Molecular conformation in the solid state is defined by τ1 = /t-177° τ2 = −38° φ = −96° ψ = +131° χ1 = 181° χ21 = 62°

NMR study of carnosine in aqueous solution indicates that rotation about CH2-CH2 is free and that the other angles take the following values: Ø −150° or −90° and X1 = 165° or 315°. Infrared and Raman spectra suggest that τ2 undergoes small changes when going from crystal to solution while ψ is close to +150°.  相似文献   


17.
Structures of non metal-metal bonded phosphido-bridged heterobimetallic complexes, including CpFe(CO)2(μ-PPh2)W(CO)5 (1-W) and metal-metal bonded CpFe(CO)(μ-CO)(μ-PPh2)W(CO)4 (2), were determined by a single crystal X-ray diffraction study. In 1-W, the long distance between Fe and W indicates no metal-metal bond to exist. In 2, a Fe---W bond with bond length 2.851 Å and a semibridging carbonyl with W---C---O angle 153° were observed. Mössbauer spectra of 1-W and 2 were taken at 77 K. Isomer shifts of 1-W and 2 were − 0.0203 mm s−1 and 0. 1917 mm s−1 respectively.  相似文献   

18.
Novel isonitrile derivatives of a diruthenium carbonyl complex, (μ235-guaiazulene)Ru2(CO)5 (2), were synthesized by substitution of a CO ligand by an isonitrile, and were subjected to studies on thermal and photochemical haptotropic interconversion. Treatment of 2 (a 45:55 mixture of two haptotropic isomers, 2-A and 2-B) with RNC at room temperature resulted in coordination of RNC and alternation of the coordination mode of the guaiazulene ligand to form (μ215-guaiazulene)Ru2(CO)5(CNR), 5d–5f, [5d; R=tBu, 5e; 2,4,6-Me3C6H2, or 5f; 2,6-iPr2C6H3] in moderate to good yields. Thermal dissociation of a CO ligand from 5 at 60 °C resulted in quantitative formation of a desirable isonitrile analogue of 2, (μ235-guaiazulene)Ru2(CO)4(CNR), 4d–4f, [4d; R=tBu, 4e; 2,4,6-Me3C6H2, or 4f; 2,6-iPr2C6H3], as a 1:1 mixture of the two haptotropic isomers. A direct synthetic route from 2 to 4d–4f was alternatively discovered; treatment of 2 with one equivalent of RNC at 60 °C gave 4d–4f in moderate yields. All of the new compounds were characterized by spectroscopy, and structures of 5d (R=tBu) and 4d-A (R=tBu) were determined by crystallography. Thermal and photochemical interconversion between the two haptotropic isomers of 4d–4f revealed that the isomer ratios in the thermal equilibrium and in the photostatic state were in the range of 48:52–54:46.  相似文献   

19.
Large-basis-set calculations of near Hartree-Fock accuracy were performed on CO+(1σ-hole 2Σ+) and CO+)2σ-hole, 2Σ+); correlation energies for these systems and for CO were calculated using an atoms-in-molecule approach, relativistic energies and vibrational structure corrections were also considered. The results are: IP(CO, 1σ) = 542.4 (542.57) eV, IP(CO,2σ) = 297.0 (296.24) cV, Dc(CO, 1Σ+) = 10.8 (11.1) Ev, D3(CO+, 1σ, 2Σ+) = 11.9 eV, De(CO+, 2σ, 2Σ+) = 9.1 eV, where IP and De stand respectively for ionization potential and dissociation energy, and where the numbers in parentheses refer to the most recent experimental values. The electron transfers resulting from the ionization of inner-shell electrons are discussed. Finally a quantitative correlation is developed correlating absolute chemical shifts to charge densities. Agreement between the calculated values and those derived from the correlation is quite satisfactory.  相似文献   

20.
The interactions of the electron donors piperazine (PIP) and N,N′-dimethylpiperazine (DMPIP) with the σ-acceptor iodine and the π-acceptors tetracyanoethylene (TCNE) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) were studied spectrophotometrically in chloroform at 25 °C. The electronic and infrared spectra of the resulting charge-transfer complexes were recorded, in addition to thermal analysis. The results obtained showed that the stoichiometries of the reactions are not fixed and depend on the nature of both the donor and the acceptor. The formed CT-complexes have the formulas of , [(PIP)(TCNE)2], [(PIP)(DDQ)2], , [(DMPIP)(TCNE)2] and [(DMPIP)(DDQ)2]. A general mechanism explaining the formation of triiodide complexes was suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号