首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Exposure to ultraviolet radiation is closely linked to the development of skin cancers in humans. The ultraviolet B (UVB) radiation wavelength (280–320 nm), in particular, causes DNA damage in epidermal keratinocytes, which are linked to the generation of signature premalignant mutations. Interactions between dermal fibroblasts and keratinocytes play a role in epidermal repair and regeneration after UVB‐induced damage. To investigate these processes, established two and three‐dimensional culture models were utilized to study the impact of fibroblast–keratinocyte crosstalk during the acute UVB response. Using a coculture system it was observed that fibroblasts enhanced keratinocyte survival and the repair of cyclobutane pyrimidine dimers (CPDs) after UVB radiation exposure. These findings were also mirrored in irradiated human skin coculture models employed in this study. Fibroblast coculture was shown to play a role in the expression and activation of members of the apoptotic cascade, including caspase‐3 and Bad. Interestingly, the expression and phosphorylation of p53, a key player in the regulation of keratinocyte cell fate postirradiation, was also shown to be influenced by fibroblast‐produced factors. This study highlights the importance of synergistic interactions between fibroblasts and keratinocytes in maintaining a functional epidermis while promoting repair and regeneration following UVB radiation‐induced damage.  相似文献   

2.
3.
The aim of this study was to analyze whether sera obtained from patients with lupus erythematosus (LE) react with membrane structures found on keratinocytes irradiated with narrow‐band ultraviolet B (NB‐UVB). We applied atomic force microscopy (AFM) to visualize cell surface structures expressing nuclear antigens upon apoptosis following NB‐UVB irradiation. Immortalized human keratinocytes (HaCaT) were cultured under standard conditions, irradiated with 800 mJ cm?2 NB‐UVB light and imaged by AFM mounted on an inverted optical microscope. It was observed that NB‐UVB irradiation provoked significant alterations of the keratinocyte morphology and led to the membrane expression of antigens recognized by anti‐La and anti‐Ro 60 kDa sera but not by antidouble‐strand DNA sera. The presence of La and Ro 60 kDa antigens on keratinocyte surfaces after NB‐UVB irradiation was limited mainly to the small bleb‐like protrusions found on the keratinocytes by AFM. A closer investigation by AFM also revealed that some structures positively stained with anti‐Ro 60 kDa serum were also located submembranously. We hypothesize that the externalization of some nuclear antigens because of NB‐UVB exposure might be responsible for exacerbation of skin symptoms in patients suffering from LE.  相似文献   

4.
Hairless (HR) is a nuclear protein with corepressor activity whose exact function in the skin remains to be determined. Mutations in both human and mouse Hairless lead to hair loss accompanied by the appearance of papules, a disorder called atrichia with papular lesions. Furthermore, mice with mutations in HR are known to have a higher susceptibility to ultraviolet radiation-induced tumorigenesis, suggesting that HR plays a crucial role in the epidermal UVB response. Using normal human keratinocytes (NHKs) and keratinocytes containing a mutation in HR, we found that HR is an early UVB response gene that negatively regulates NFκB mRNA expression. HR mutant keratinocytes have a dysregulated UVB response that includes increased proliferation and the aberrant activation of NFκB effector genes. Additionally, we show that another UVB response gene, TNFα, negatively regulates HR mRNA expression. TNFα-induced negative regulation of HR occurs through a direct interaction of the p65 subunit with a single NFκB-binding domain located in the HR promoter region. Therefore, we show for the first time that HR and NFκB participate in a positive feedback loop that can be initiated either by UVB or TNFα.  相似文献   

5.
The phosphorylated form of histone H2AX, γH2AX, is a component of the DNA repair system. Most studies have focused on the role of γH2AX during cell transformation and human cancer, but little is known about its role in keratinocytes and the skin during UV irradiation. We analyzed the response to UV irradiation focusing on the phosphorylation of histone H2AX both in vitro, in keratinocyte cultures and in artificial epidermis, and then in vivo, in human skin. Acute UVB irradiation of human keratinocytes increased the phosphorylation of H2AX in a dose-dependent manner; two types of γH2AX response were observed either in vitro or in vivo. After a low nonapoptotic UVB irradiation, cells contained phosphorylated H2AX and arrested their cell cycle to repair the DNA damages. For a stronger and proapoptotic UVB irradiation, keratinocytes dramatically increased the phosphorylation of H2AX and committed apoptosis. Our results indicate that γH2AX constitutes a highly sensitive marker relevant for studying subapoptotic doses as well as proapoptotic doses of UVB in human skin.  相似文献   

6.
UVB (280–315 nm) in natural sunlight represents a major environmental challenge to the skin and is clearly associated with human skin cancer. Here we demonstrate that low doses of UVB induce keratinocyte proliferation and cell cycle progression of human HaCaT keratinocytes. Different from UVA, UVB irradiation induced extracellular signal‐regulated kinase (ERK) and AKT activation and their activation are both required for UVB‐induced cell cycle progression. Activation of epidermal growth factor receptor (EGFR) was observed after UVB exposure and is upstream of ERK/AKT/cyclin D1 pathway activation and cell cycle progression following UVB radiation. Furthermore, metalloproteinase (MP) inhibitor GM6001 blocked UVB‐induced ERK and AKT activation, cell cycle progression, and decreased the EGFR phosphorylation, demonstrating that MPs mediate the EGFR/ERK/AKT/cyclin D1 pathways and cell cycle progression induced by UVB radiation. In addition, ERK or AKT activation is essential for EGFR activation because ERK or AKT inhibitor blocks EGFR activation following UVB radiation, indicating that EGFR/AKT/ERK pathways form a regulatory loop and converge into cell cycle progression following UVB radiation. Identification of these signaling pathways in UVB‐induced cell cycle progression of quiescent keratinocytes as a process mimicking tumor promotion in vivo will facilitate the development of efficient and safe chemopreventive and therapeutic strategies for skin cancer.  相似文献   

7.
8.
Abstract— EUltraviolet (UV) light is the most important environmental insult to skin. Even a single exposure to UVB radiation can result in inflammation and may also lead to DNA damage and apoptosis in the acute response of the cutaneous tissue. To elucidate the complex alterations of gene expression in human keratinocytes underlying these UV responses we took advantage of differential display polymerase chain reaction (DD-PCR) technology's ability to detect qualitative and quantitative changes in gene expression in more than two cell populations simultaneously. We demonstrate that low-dose UVB (100 Jm-2) leads to both induction and down regulation of different genes during the 24 h after irradiation in a time-dependent manner. In addition to the identification of known genes as possible effectors or targets in the UV response of human keratinocytes, we here identify a new sequence that is negatively regulated by UVB irradiation and was termed HUR 7 (HaCaT UV repressed). In general our results showed that DD-PCR is a useful tool in the analysis of quantitative changes of mRNA levels in human keratinocytes after UV irradiation. The identification of new UVB-repressed genes offers the opportunity to identify unrecognized molecular mechanisms in the UV response of human cells.  相似文献   

9.
The regulation of a transmembrane ionic gradient, reflected by the cellular membrane potential, has been shown in several cell systems to be involved in the regulation of cell function. This investigation presents evidence that biologically relevant doses of ultraviolet radiation (UVR) will alter the membrane potential of keratinocytes in vitro. Estimation of the relative change in the steady-state membrane potential of the murine keratinocyte cell line PAM 212, the murine myelomonocytic cell line P388D1, and normal human keratinocytes in culture, were made through the use of the lipophilic cationic membrane potential sensitive probe; triphenylmethylphosphonium. Our observations indicate that UVR composed primarily of UVB (280-320 nm) radiation at doses as low as 100 J/m2 can induce a depolarization in the murine cell lines and a hyperpolarization in human keratinocytes. Evidence suggests that this difference in the direction of the membrane potential response reflects a difference in Na+/K+ ATPase activity following UVR. These results suggest a possible mechanism for modulation of keratinocyte activity induced by UVR.  相似文献   

10.
Photodynamic therapy (PDT), an anticancer treatment modality, has recently been shown to be an effective treatment for several autoimmune disease models including antigen-induced arthritis. PDT was found to induce the expression of IL-10 messenger RNA (mRNA) and protein in the skin, and this expression has similar kinetics to the appearance of PDT-induced suppression of skin-mediated immune responses such as the contract hypersensitivity (CHS) response. Some aspects of the UVB-induced suppression of the immune response have been linked to the induction of IL-10. IL-10 has been shown to inhibit the development and activation of Th1 cells, which are critical for many cell-mediated immune responses, including CHS. We have examined the effect of PDT and UVB irradiation on the activity of the IL-10 gene promoter and on IL-10 mRNA stability using the murine keratinocyte line, PAM 212. In vitro PDT induces IL-10 mRNA and protein expression from PAM 212 cells, which can be correlated with an increase in AP-1 DNA binding activity and activation of the IL-10 gene promoter by PDT. Deletion of an AP-1 response element from the IL-10 gene promoter was shown to abrogate the PDT-induced promoter activity indicating that the AP-1 response element is critical to IL-10 induction by PDT. In addition, PDT results in an increase in IL-10 mRNA stability, which may also contribute to the increased IL-10 expression in PAM 212 cells following PDT. In vitro UVB irradiation also results in activation of the IL-10 promoter. However, in contrast to PDT, UVB-induced activation of the IL-10 promoter is not AP-1 dependent and did not increase IL-10 mRNA stability.  相似文献   

11.
Malaysian tualang honey possesses strong antioxidant and anti‐inflammatory properties. Here, we evaluated the effect of tualang honey on early biomarkers of photocarcinogenesis employing PAM212 mouse keratinocyte cell line. Keratinocytes were treated with tualang honey (1.0%, v/v) before a single UVB (150 mJ cm?2) irradiation. We found that the treatment of tualang honey inhibited UVB‐induced DNA damage, and enhanced repair of UVB‐mediated formation of cyclobutane pyrimidine dimers and 8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine. Treatment of tualang honey inhibited UVB‐induced nuclear translocation of NF‐κB and degradation of IκBα in murine keratinocyte cell line. The treatment of tualang honey also inhibited UVB‐induced inflammatory cytokines and inducible nitric oxide synthase protein expression. Furthermore, the treatment of tualang honey inhibited UVB‐induced COX‐2 expression and PGE2 production. Taken together, we provide evidence that the treatment of tualang honey to keratinocytes affords substantial protection from the adverse effects of UVB radiation via modulation in early biomarkers of photocarcinogenesis and provide suggestion for its photochemopreventive potential.  相似文献   

12.
13.
14.
The ATR protein kinase has well-described roles in maintaining genomic integrity during the DNA synthesis phase of the cell cycle. However, ATR function in cells that are not actively replicating DNA remains largely unexplored. Using HaCaT and telomerase-immortalized human keratinocytes maintained in a confluent, nonreplicating state in vitro, ATR was found to be robustly activated in response to UVB radiation in a manner dependent on the nucleotide excision repair factor and DNA translocase XPB. Inhibition of ATR kinase activity under these conditions negatively impacted acute cell survival and cytotoxicity and severely inhibited the ability of UVB-irradiated HaCaT keratinocytes to proliferate upon stimulation with growth factors. Furthermore, ATR kinase inhibition in quiescent HaCaT keratinocytes potentiated UVB mutagenesis at the hypoxanthine phosphoribosyltransferase locus. Though ATR inhibition did not impact the rate of removal of cyclobutane pyrimidine dimers from genomic DNA, elevated levels of PCNA mono-ubiquitination and chromatin-associated PCNA and RPA indicate that excision gap-filling synthesis was altered in the absence of ATR signaling. These results indicate that the ATR kinase plays important roles in preventing mutagenesis and in promoting the proliferative potential of quiescent keratinocytes exposed to UVB radiation.  相似文献   

15.
16.
17.
As the most important interface between human body and external environment, skin acts as an essential barrier preventing various environmental damages, among which DNA‐damaging UV radiation from the sun remains the major environmental risk factor causing various skin diseases. It has been well documented that wavelengths in the ultraviolet B (UVB) radiation range (290–320 nm) of the solar spectrum can be absorbed by skin and lead to cutaneous injury and various other deleterious effects. During process such as wound healing, the orchestrated movement of cells in a particular direction is essential and highly regulated, integrating signals controlling adhesion, polarity and the cytoskeleton. Cell adhesion and migration are modulated through both of actin and microtubule cytoskeletons. However, little was known about how UVB affects skin wound healing and migration of epidermal keratinocytes. Here, we demonstrate that UVB can delay the wound healing progress in vivo with a murine model of full‐thickness skin wound. In addition, UVB significantly inhibited keratinocyte motility by altering focal adhesion turnover and cytoskeletal dynamics. Our results provide new insights into the etiology of UVB exposure‐induced skin damages.  相似文献   

18.
Nonmelanoma skin cancer, derived from epidermal keratinocytes, is the most common malignancy in organ transplant recipients, causes serious morbidity and mortality, and is strongly associated with solar ultraviolet (UV) exposure. Preventing and treating skin cancer in these individuals has been extraordinarily challenging. Following organ transplantation, the immunosuppressants are used to prevent graft rejection. Until now, immunosuppression has been assumed to be the major factor leading to skin cancer in this setting. However, the mechanism of skin carcinogenesis in organ transplant recipients has not been understood to date; specifically, it remains unknown whether these cancers are immunosuppression‐dependent or ‐independent. In particular, it remains poorly understood what is the mechanistic carcinogenic action of the newer generation of immunosuppressants including tacrolimus and mycophenolate mofetil (MMF). Here, we show that tacrolimus and MMF impairs UVB‐induced DNA damage repair and apoptosis in human epidermal keratinocytes. In addition, tacrolimus inhibits UVB‐induced checkpoint signaling. However, MMF had no effect. Our findings have demonstrated that tacrolimus and MMF compromises proper UVB response in keratinocytes, suggesting an immunosuppression‐independent mechanism in the tumor‐promoting action of these immunosuppressants.  相似文献   

19.
Narrow-band UVB induces apoptosis in human keratinocytes   总被引:8,自引:0,他引:8  
Narrow-band ultraviolet (NB-UVB) phototherapy emits mostly 311/312 nm light and is commonly used in the treatment of inflammatory skin disorders. As a source of UVB irradiation, NB-UVB causes apoptosis in T lymphocytes but its effects on keratinocytes are unknown. Herein, we have investigated the ability of NB-UVB to induce apoptosis in keratinocytes. Two types of human keratinocytes, primary and immortalized, were exposed to NB-UVB and broad-band UVB (BB-UVB; 315-280 nm) and tested for apoptosis. Both UVB light sources induced apoptosis in keratinocytes as determined by the presence of DNA ladders, although NB-UVB required approximately ten fold higher doses; NB-UVB (1000 mJ/cm2) and BB-UVB (125 mJ/cm2). By comparison, lower doses of NB-UVB (750 mJ/cm2) induced apoptosis in T lymphocytes, suggesting cell type specificity for NB-UVB induced apoptosis. Approximately, 50% or more of the cells underwent apoptosis when exposed to NB-UVB or BB-UVB as revealed by TUNEL assay. Electron micrographs showed that NB-UVB irradiated keratinocytes contained marked chromatin condensation, extensive cytoplasmic vacuolization and fragmentation of the nuclear envelope. Furthermore, Western blot analysis confirmed the presence of activated products of caspase 3 in keratinocytes that received apoptotic doses of NB-UVB. This study defines conditions by which NB-UVB irradiation causes apoptosis in keratinocytes.  相似文献   

20.
The proinflammatory cytokine interleukin-20 (IL-20) may exert the majority of its activity in the skin. We examined the effect of various treatments including several forms of phototherapy on IL-20 expression using cultured normal human epithelial keratinocytes (NHEK). Broadband UVB light, recombinant (r) IL-1 and rIL-8 increased, while hydrocortisone reduced, NHEK supernatant IL-20 levels. Elevation of NHEK IL-20 mRNA and maximal supernatant IL-20 levels occurred with a UVB light dose (40 mJ cm(-2)) that reduced cell viability by approximately 50%. While this UVB light dose also elevated supernatant IL-1 alpha and IL-8 levels, antibody neutralization studies indicated that neither of these cytokines was directly responsible for this increase in IL-20 expression. However, the elevation in IL-20 levels was fully inhibited by the p38 mitogen-activated protein kinase (MAPK) inhibitor SB-203580, suggesting involvement of this stress signaling pathway in this UVB light response. Photodynamic therapy (PDT) with the photosensitizer lemuteporfin, UVA light, cisplatin, lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-alpha) or recombinant interferon-gamma (rIFN-gamma) either had little effect or decreased NHEK supernatant IL-20 levels. Reduced IL-20 levels paralleled the cytotoxic actions of PDT, UVA light or cisplatin and the antiproliferative effect of rIFN-gamma. Neither rIL-20 supplementation nor anti-IL-20 antibody treatments affected cell viability indicating that soluble IL-20 did not affect the short-term survival of UVB light-irradiated NHEK. Stimulation of IL-20 expression in keratinocytes by UVB light suggests that this cytokine might participate in skin responses to this ever-present environmental factor and potentially has a role in UV light-associated dermatoses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号