首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Identifying and understanding the differences between protein folding in bulk solution and in the cell is a crucial challenge facing biology. Using Langevin dynamics, we have simulated intact ribosomes containing five different nascent chains arrested at different stages of their synthesis such that each nascent chain can fold and unfold at or near the exit tunnel vestibule. We find that the native state is destabilized close to the ribosome surface due to an increase in unfolded state entropy and a decrease in native state entropy; the former arises because the unfolded ensemble tends to behave as an expanded random coil near the ribosome and a semicompact globule in bulk solution. In addition, the unfolded ensemble of the nascent chain adopts a highly anisotropic shape near the ribosome surface and the cooperativity of the folding-unfolding transition is decreased due to the appearance of partially folded structures that are not populated in bulk solution. The results show, in light of these effects, that with increasing nascent chain length folding rates increase in a linear manner and unfolding rates decrease, with larger and topologically more complex folds being the most highly perturbed by the ribosome. Analysis of folding trajectories, initiated by temperature quench, reveals the transition state ensemble is driven toward compaction and greater native-like structure by interactions with the ribosome surface and exit vestibule. Furthermore, the diversity of folding pathways decreases and the probability increases of initiating folding via the N-terminus on the ribosome. We show that all of these findings are equally applicable to the situation in which protein folding occurs during continuous (non-arrested) translation provided that the time scales of folding and unfolding are much faster than the time scale of monomer addition to the growing nascent chain, which results in a quasi-equilibrium process. These substantial ribosome-induced perturbations to almost all aspects of protein folding indicate that folding scenarios that are distinct from those of bulk solution can occur on the ribosome.  相似文献   

2.
Characterizing the conformations of protein in the transition state ensemble (TSE) is important for studying protein folding. A promising approach pioneered by Vendruscolo et al. [Nature (London) 409, 641 (2001)] to study TSE is to generate conformations that satisfy all constraints imposed by the experimentally measured φ values that provide information about the native likeness of the transition states. Fai?sca et al. [J. Chem. Phys. 129, 095108 (2008)] generated conformations of TSE based on the criterion that, starting from a TS conformation, the probabilities of folding and unfolding are about equal through Markov Chain Monte Carlo (MCMC) simulations. In this study, we use the technique of constrained sequential Monte Carlo method [Lin et al., J. Chem. Phys. 129, 094101 (2008); Zhang et al. Proteins 66, 61 (2007)] to generate TSE conformations of acylphosphatase of 98 residues that satisfy the φ-value constraints, as well as the criterion that each conformation has a folding probability of 0.5 by Monte Carlo simulations. We adopt a two stage process and first generate 5000 contact maps satisfying the φ-value constraints. Each contact map is then used to generate 1000 properly weighted conformations. After clustering similar conformations, we obtain a set of properly weighted samples of 4185 candidate clusters. Representative conformation of each of these cluster is then selected and 50 runs of Markov chain Monte Carlo (MCMC) simulation are carried using a regrowth move set. We then select a subset of 1501 conformations that have equal probabilities to fold and to unfold as the set of TSE. These 1501 samples characterize well the distribution of transition state ensemble conformations of acylphosphatase. Compared with previous studies, our approach can access much wider conformational space and can objectively generate conformations that satisfy the φ-value constraints and the criterion of 0.5 folding probability without bias. In contrast to previous studies, our results show that transition state conformations are very diverse and are far from nativelike when measured in cartesian root-mean-square deviation (cRMSD): the average cRMSD between TSE conformations and the native structure is 9.4 A? for this short protein, instead of 6 A? reported in previous studies. In addition, we found that the average fraction of native contacts in the TSE is 0.37, with enrichment in native-like β-sheets and a shortage of long range contacts, suggesting such contacts form at a later stage of folding. We further calculate the first passage time of folding of TSE conformations through calculation of physical time associated with the regrowth moves in MCMC simulation through mapping such moves to a Markovian state model, whose transition time was obtained by Langevin dynamics simulations. Our results indicate that despite the large structural diversity of the TSE, they are characterized by similar folding time. Our approach is general and can be used to study TSE in other macromolecules.  相似文献   

3.
The F61A/A90G mutant of a redesigned form of apocytochrome b562 folds by an apparent two-state mechanism. We have used the pressure dependence of 15N NMR relaxation dispersion rate profiles to study the changes in volumetric parameters that accompany the folding reaction of this protein at 45 degrees C. The experiments were performed under conditions where the folding/unfolding equilibrium could be studied at each pressure without addition of denaturants. The exquisite sensitivity of the methodology to small changes in folding/unfolding rates facilitated the use of relatively low-pressure values (between 1 and 270 bar) so that pressure-induced changes to the unfolded state ensemble could be minimized. A volume change for unfolding of -81 mL/mol is measured (at 1 bar), a factor of 1.4 larger (in absolute value) than the volume difference between the transition state ensemble (TSE) and the unfolded state. Notably, the changes in the free energy difference between folded and unfolded states and in the activation free energy for folding were not linear with pressure. Thus, the difference in the isothermal compressibility upon unfolding (-0.11 mL mol(-1) bar(-1)) and, for the first time, the compressibility of the TSE relative to the unfolded state (0.15 mL mol(-1) bar(-1)) could be calculated. The results argue for a TSE that is collapsed but loosely packed relative to the folded state and significantly hydrated, suggesting that the release of water occurs after the rate-limiting step in protein folding. The notion of a collapsed and hydrated TSE is consistent with expectations based on earlier temperature-dependent folding studies, showing that the barrier to folding at 45 degrees C is entropic (Choy, W. Y.; Zhou, Z.; Bai, Y.; Kay, L. E. J. Am. Chem. Soc. 2005, 127, 5066-5072).  相似文献   

4.
Protein folding in confined media has attracted wide attention over the past decade due to its importance in both in vivo and in vitro applications. Currently, it is generally believed that protein stability increases by decreasing the size of the confining medium, if its interaction with the confining walls is repulsive, and that the maximum folding temperature in confinement occurs for a pore size only slightly larger than the smallest dimension of the folded state of a protein. Protein stability in pore sizes, very close to the size of the folded state, has not however received the attention that it deserves. Using detailed, 0.3-ms-long molecular dynamics simulations, we show that proteins with an α-helix native state can have an optimal folding temperature in pore sizes that do not affect the folded-state structure. In contradiction to the current theoretical explanations, we find that the maximum folding temperature occurs in larger pores for smaller α-helices. In highly confined pores the free energy surface becomes rough, and a new barrier for protein folding may appear close to the unfolded state. In addition, in small nanopores the protein states that contain the β structures are entropically stabilized, in contrast to the bulk. As a consequence, folding rates decrease notably and the free energy surface becomes rougher. The results shed light on many recent experimental observations that cannot be explained by the current theories, and demonstrate the importance of entropic effects on proteins' misfolded states in highly confined environments. They also support the concept of passive effect of chaperonin GroEL on protein folding by preventing it from aggregation in crowded environment of biological cells, and provide deeper clues to the α → β conformational transition, believed to contribute to Alzheimer's and Parkinson's diseases. The strategy of protein and enzyme stabilization in confined media may also have to be revisited in the case of tight confinement. For in silico studies of protein folding in confined media, use of non-Go potentials may be more appropriate.  相似文献   

5.
The iterative annealing mechanism (IAM) of chaperonin-assisted protein folding is explored in a framework of a well-established coarse-grained protein modeling tool, which enables the study of protein dynamics in a time-scale well beyond classical all-atom molecular mechanics. The chaperonin mechanism of action is simulated for two paradigm systems of protein folding, B domain of protein A (BdpA) and B1 domain of protein G (GB1), and compared to chaperonin-free simulations presented here for BdpA and recently published for GB1. The prediction of the BdpA transition state ensemble (TSE) is in perfect agreement with experimental findings. It is shown that periodic distortion of the polypeptide chains by hydrophobic chaperonin interactions can promote rapid folding and leads to a decrease in folding temperature. It is also demonstrated how chaperonin action prevents kinetically trapped conformations and modulates the observed folding mechanisms from nucleation-condensation to a more framework-like.  相似文献   

6.
We implement a forward flux sampling approach [R. J. Allen et al., J. Chem. Phys. 124, 194111 (2006)] for calculating transition rate constants and for sampling paths of protein folding events. The algorithm generates trajectories for the transition between the unfolded and folded states as chains of partially connected paths, which can be used to obtain the transition-state ensemble and the properties that characterize these intermediates. We apply this approach to Monte Carlo simulations of a model lattice protein in open space and in confined spaces of varying dimensions. We study the effect of confinement on both protein thermodynamic stability and folding kinetics; the former by mapping free-energy landscapes and the latter by the determination of rate constants and mechanistic details of the folding pathway. Our results show that, for the range of temperatures where the native state is stable, confinement of a protein destabilizes the unfolded state by reducing its entropy, resulting in increased thermodynamic stability of the folded state. Relative to the folding in open space, we find that the kinetics can be accelerated at temperatures above the temperature at which the unconfined protein folds fastest and that the rate constant increases with the number of constrained dimensions. By examining the statistical properties of the transition-state ensemble, we detect signs of a classical nucleation folding mechanism for a core of native contacts formed at an early stage of the process. This nucleus acts as folding foci and is composed of those residues that have higher probability to form native contacts in the transition-state intermediates, which can vary depending on the confinement conditions of the system.  相似文献   

7.
RNAs must fold into unique three-dimensional structures to function in the cell, but how each polynucleotide finds its native structure is not understood. To investigate whether the stability of the tertiary structure determines the speed and accuracy of RNA folding, docking of a tetraloop with its receptor in a bacterial group I ribozyme was perturbed by site-directed mutagenesis. Disruption of the tetraloop or its receptor destabilizes tertiary interactions throughout the ribozyme by 2-3 kcal/mol, demonstrating that tertiary interactions form cooperatively in the transition from a native-like intermediate to the native state. Nondenaturing PAGE and RNase T1 digestion showed that base pairs form less homogeneously in the mutant RNAs during the transition from the unfolded state to the intermediate. Thus, tertiary interactions between helices bias the ensemble of secondary structures toward native-like conformations. Time-resolved hydroxyl radical footprinting showed that the wild-type ribozyme folds completely within 5-20 ms. By contrast, only 40-60% of a tetraloop mutant ribozyme folds in 30-40 ms, with the remainder folding in 30-200 s via nonnative intermediates. Therefore, destabilization of tetraloop-receptor docking introduces an alternate folding pathway in the otherwise smooth energy landscape of the wild-type ribozyme. Our results show that stable tertiary structure increases the flux through folding pathways that lead directly and rapidly to the native structure.  相似文献   

8.
Proteins fold and function in the crowded environment of the cell's interior. In the recent years it has been well established that the so-called "macromolecular crowding" effect enhances the folding stability of proteins by destabilizing their unfolded states for selected proteins. On the other hand, chemical and thermal denaturation is often used in experiments as a tool to destabilize a protein by populating the unfolded states when probing its folding landscape and thermodynamic properties. However, little is known about the complicated effects of these synergistic perturbations acting on the kinetic properties of proteins, particularly when large structural fluctuations, such as protein folding, have been involved. In this study, we have first investigated the folding mechanism of Trp-cage dependent on urea concentration by coarse-grained molecular simulations where the impact of urea is implemented into an energy function of the side chain and/or backbone interactions derived from the all-atomistic molecular dynamics simulations with urea through a Boltzmann inversion method. In urea solution, the folding rates of a model miniprotein Trp-cage decrease and the folded state slightly swells due to a lack of contact formation between side chains at the terminal regions. In addition, the equilibrium m-values of Trp-cage from the computer simulations are in agreement with experimental measurements. We have further investigated the combined effects of urea denaturation and macromolecular crowding on Trp-cage's folding mechanism where crowding agents are modeled as hard-spheres. The enhancement of folding rates of Trp-cage is most pronounced by macromolecular crowding effect when the extended conformations of Trp-cast dominate at high urea concentration. Our study makes quantitatively testable predictions on protein folding dynamics in a complex environment involving both chemical denaturation and macromolecular crowding effects.  相似文献   

9.
We study the equilibrium folding/unfolding thermodynamics of a small globular miniprotein, the Trp cage, that is confined to the interior of a 2 nm radius fullerene ball. The interactions of the fullerene surface are changed from nonpolar to polar to mimic the interior of the GroEL/ES chaperonin that assists proteins to fold in vivo. We find that nonpolar confinement stabilizes the folded state of the protein due to the effects of volume reduction that destabilize the unfolded state and also due to interactions with the fullerene surface. For the Trp cage, polar confinement has a net destabilizing effect that results from the stabilizing confinement and the competitive exclusion effect that keeps the protein away from the surface hydration shell and stronger interactions between charged side chains in the protein and the polar surface that compete against the formation of an ion pair that stabilizes the protein folded state. We show that confinement effects due to volume reduction can be overcome by sequence-specific interactions of the protein side chains with the encapsulating surface. This study shows that there is a complex balance among many competing effects that determine the mechanism of GroEL chaperonin in enhancing the folding rate of polypeptide inside its cavity.  相似文献   

10.
Proteins normally fold in crowded cellular environments. Here we use a set of Desulfovibrio desulfuricans apoflavodoxin variants to assess--with residue-specific resolution--how apoflavodoxin's folding landscape is tuned by macromolecular crowding. We find that, under crowded conditions, initial topological frustration is reduced, subsequent folding requires less ordering in the transition state, and β-strand 1 becomes more important in guiding the process. We propose that conditions more closely mimicking the cellular environment make the ensemble of unfolded conformations less expanded, resulting in a folding funnel that is smoother and narrower.  相似文献   

11.
Glycosylation regulates vital cellular processes and dramatically influences protein folding and stability. In particular, experiments have demonstrated that asparagine (N)-linked disaccharides drive a "conformational switch" in a model peptide. The present work investigates this conformational switch via extensive atomically detailed replica exchange molecular dynamics simulations in explicit solvent. To distinguish the effects of specific and nonspecific interactions upon the peptide conformational ensemble, these simulations considered model peptides that were N-linked to a disaccharide and to a steric crowder of the same shape. The simulations are remarkably consistent with experiment and provide detailed insight into the peptide structure ensemble. They suggest that steric crowding by N-linked disaccharides excludes extended conformations, but does not significantly impact the tetrahedral structure of the surrounding solvent or otherwise alter the peptide free energy surface. However, the combination of steric crowding with specific hydrogen bonds and hydrophobic stacking interactions more dramatically impacts the peptide ensemble and stabilizes new structures.  相似文献   

12.
Discontinuous molecular dynamics simulations, together with the protein intermediate resolution model, an intermediate-resolution model of proteins, are used to carry out several microsecond-long simulations and study folding transition and stability of alpha-de novo-designed proteins in slit nanopores. Both attractive and repulsive interaction potentials between the proteins and the pore walls are considered. Near the folding temperature T(f) and in the presence of the attractive potential, the proteins undergo a repeating sequence of folding/partially folding/unfolding transitions, with T(f) decreasing with decreasing pore sizes. The unfolded states may even be completely adsorbed on the pore's walls with a negative potential energy. In such pores the energetic effects dominate the entropic effects. As a result, the unfolded state is stabilized, with a folding temperature T(f) which is lower than its value in the bulk and that, compared with the bulk, the folding rate decreases. The opposite is true in the presence of a repulsive interaction potential between the proteins and the walls. Moreover, for short proteins in very tight pores with attractive walls, there exists an unfolded state with only one alpha-helical hydrogen bond and an energy nearly equal to that of the folded state. The proteins have, however, high entropies, implying that they cannot fold onto their native structure, whereas in the presence of repulsive walls the proteins do attain their native structure. There is a pronounced asymmetry between the two termini of the protein with respect to their interaction with the pore walls. The effect of a variety of factors, including the pore size and the proteins' length, as well as the temperature, is studied in detail.  相似文献   

13.
Protein folding kinetic data have been obtained for the marginally stable N-terminal SH3 domain of the Drosophila protein drk as a function of pH in order to investigate the electrostatic properties of Asp8 in the folding transition state ensemble. The slow exchange between folded and unfolded forms of the protein gives rise to separate NMR resonances for both folded and unfolded states at equilibrium. As a result, kinetic data can be derived from magnetization transfer between these two states without the need for denaturants. Using the fact that ionization of Asp8 dominates the electrostatic behavior of the protein between pH 2 and 3, along with pKa values for titrating groups in both folded and unfolded states that have been determined in a previous study, values of 2.9 +/- 0.1 and 3.3 +/- 0.2 are obtained for the pKa of Asp8 in the transition state for the wild-type protein and for a His7Ala mutant, respectively. The data are consistent with the partial formation in the transition state ensemble of an Asp8 side chain carboxylate-a Lys21 backbone amide interaction that represents a highly conserved contact in folded SH3 domains.  相似文献   

14.
15.
Characterization of the folding transition-state ensemble and the denatured-state ensemble is an important step toward a full elucidation of protein folding mechanisms. We report herein an investigation of the free-energy landscape of FSD-1 protein by a total of four sets of folding and unfolding molecular dynamics simulations with explicit solvent. The transition-state ensemble was initially identified from unfolding simulations at 500 K and was verified by simulations at 300 K starting from the ensemble structures. The denatured-state ensemble and the early-stage folding were studied by a combination of unfolding simulations at 500 K and folding simulations at 300 K starting from the extended conformation. A common feature of the transition-state ensemble was the substantial formation of the native secondary structures, including both the alpha-helix and beta-sheet, with partial exposure of the hydrophobic core in the solvent. Both the native and non-native secondary structures were observed in the denatured-state ensemble and early-stage folding, consistent with the smooth experimental melting curve. Interestingly, the contact orders of the transition-state ensemble structures were similar to that of the native structure and were notably lower than those of the compact structures found in early-stage folding, implying that chain and topological entropy might play significant roles in protein folding. Implications for FSD-1 folding mechanisms and the rate-limiting step are discussed. Analyses further revealed interesting non-native interactions in the denatured-state ensemble and early-stage folding and the possibility that destabilization of these interactions could help to enhance the stability and folding rate of the protein.  相似文献   

16.
We report on an observation of the phase transition between two liquid phases of supercooled confined water in simulations. The temperature of the liquid-liquid transition of water at zero pressure slightly decreases due to confinement in the hydrophobic pore. The hydrophilic confinement affects this temperature in the opposite direction and shifts the critical point of the liquid-liquid transition to a higher pressure. As a result, in a strongly hydrophilic pore the liquid-liquid phase transition becomes continuous at zero pressure, indicating the shift of its critical point from negative to a positive pressure. These findings indicate that experimental studies of water confined in the pores of various hydrophobicity/hydrophilicity may clarify the location of the liquid-liquid critical point of bulk water.  相似文献   

17.
The reorientation dynamics of water confined within nanoscale, hydrophilic silica pores are investigated using molecular dynamics simulations. The effect of surface hydrogen-bonding and electrostatic interactions are examined by comparing with both a silica pore with no charges (representing hydrophobic confinement) and bulk water. The OH reorientation in water is found to slow significantly in hydrophilic confinement compared to bulk water, and is well-described by a power-law decay extending beyond one nanosecond. In contrast, the dynamics of water in the hydrophobic pore are more modestly affected. A two-state model, commonly used to interpret confined liquid properties, is tested by analysis of the position-dependence of the water dynamics. While the two-state model provides a good fit of the orientational decay, our molecular-level analysis evidences that it relies on an over-simplified picture of water dynamics. In contrast with the two-state model assumptions, the interface dynamics is markedly heterogeneous, especially in the hydrophilic pore and there is no single interfacial state with a common dynamics.  相似文献   

18.
We examine the ability of Bayesian methods to recreate structural ensembles for partially folded molecules from averaged data. Specifically we test the ability of various algorithms to recreate different transition state ensembles for folding proteins using a multiple replica simulation algorithm using input from "gold standard" reference ensembles that were first generated with a Go-like Hamiltonian having nonpairwise additive terms. A set of low resolution data, which function as the "experimental" phi values, were first constructed from this reference ensemble. The resulting phi values were then treated as one would treat laboratory experimental data and were used as input in the replica reconstruction algorithm. The resulting ensembles of structures obtained by the replica algorithm were compared to the gold standard reference ensemble, from which those "data" were, in fact, obtained. It is found that for a unimodal transition state ensemble with a low barrier, the multiple replica algorithm does recreate the reference ensemble fairly successfully when no experimental error is assumed. The Kolmogorov-Smirnov test as well as principal component analysis show that the overlap of the recovered and reference ensembles is significantly enhanced when multiple replicas are used. Reduction of the multiple replica ensembles by clustering successfully yields subensembles with close similarity to the reference ensembles. On the other hand, for a high barrier transition state with two distinct transition state ensembles, the single replica algorithm only samples a few structures of one of the reference ensemble basins. This is due to the fact that the phi values are intrinsically ensemble averaged quantities. The replica algorithm with multiple copies does sample both reference ensemble basins. In contrast to the single replica case, the multiple replicas are constrained to reproduce the average phi values, but allow fluctuations in phi for each individual copy. These fluctuations facilitate a more faithful sampling of the reference ensemble basins. Finally, we test how robustly the reconstruction algorithm can function by introducing errors in phi comparable in magnitude to those suggested by some authors. In this circumstance we observe that the chances of ensemble recovery with the replica algorithm are poor using a single replica, but are improved when multiple copies are used. A multimodal transition state ensemble, however, turns out to be more sensitive to large errors in phi (if appropriately gauged) and attempts at successful recreation of the reference ensemble with simple replica algorithms can fall short.  相似文献   

19.
《Liquid crystals》2000,27(5):643-648
The influence of geometric confinement on the state of order and on the glass relaxation process was investigated for a triphenylene derivative able to display a highly ordered plastic columnar phase in the bulk. The compound was incorporated into porous glasses - characterized by a narrow size distribution - with average pore diameters of 20, 7.5, 5 and 2.5 nm. The X-ray diagrams revealed the presence of a hexagonal order, yet the lattice spacing is significantly reduced with decreasing pore size and the reflections become broad. The X-ray doublet reflection, superimposed on the halo which is characteristic for the bulk plastic columnar phase, is absent in all cases. It is replaced by a single broad intracolumnar reflection which indicates that the confinement destabilizes the plastic phase in favour of the hexagonal ordered phase. A further observation is that the intracolumnar correlation length is reduced with decreasing pore size. The confinement was furthermore found to cause a transition from a strong glass (bulk material) to a fragile glass former, obviously induced by the structural modification.  相似文献   

20.
The influence of geometric confinement on the state of order and on the glass relaxation process was investigated for a triphenylene derivative able to display a highly ordered plastic columnar phase in the bulk. The compound was incorporated into porous glasses - characterized by a narrow size distribution - with average pore diameters of 20, 7.5, 5 and 2.5 nm. The X-ray diagrams revealed the presence of a hexagonal order, yet the lattice spacing is significantly reduced with decreasing pore size and the reflections become broad. The X-ray doublet reflection, superimposed on the halo which is characteristic for the bulk plastic columnar phase, is absent in all cases. It is replaced by a single broad intracolumnar reflection which indicates that the confinement destabilizes the plastic phase in favour of the hexagonal ordered phase. A further observation is that the intracolumnar correlation length is reduced with decreasing pore size. The confinement was furthermore found to cause a transition from a strong glass (bulk material) to a fragile glass former, obviously induced by the structural modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号