首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 389 毫秒
1.
Lanthanide trifluoromethyl sulfonates, M(SO3CF3)3 · 9H2O, have been prepared and characterized by analysis, optical properties and thermal behaviour. Dehydration proceeded in two steps for the lanthanum, cerium, praseodymium and neodymium salts and in three steps for other members of the lanthanide series. Thermal decomposition to lanthanide fluoride, carbonyl fluoride and sulfur dioxide occurred at temperatures greater than 400°C. This decomposition has been shown to be a two step process.  相似文献   

2.
Assembly of three-connecting ligands 1,3,5-tris(1-imidazolyl)benzene (tib) and 1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene (titmb) with cadmium(II) and silver(I) salts provide new metal-organic frameworks, [Cd(tib)2](NO3)2·4H2O (1), [Ag(tib)(PPh3)](CF3SO3) (2) and [Ag(titmb)(PPh3)](CF3SO3)·1.5H2O (3) (PPh3=triphenylphosphine). Single-crystal X-ray diffraction studies reveal that complexes 1 and 3 are two-dimensional honeycomb networks, while complex 2 is a noninterpenetrated three-dimensional architecture with (10,3)-a topology. The results indicate that the nature (structure and flexibility) of the organic ligands and the bulky auxiliary ligand have great impact on the assembly and structure of metal-organic frameworks. The photoluminescent properties of the synthesized complexes were studied in the solid state at room temperature.  相似文献   

3.
The thermal decomposition of several lanthanide salts Ln(CF3COO)3·3H2O (Ln=La, Gd, Tb) was studied under quasi-equilibrium conditions and under linear heating. According to mass spectral data, H2O is the single product of thermal decomposition up to 120-140°C. Thermogravimetric data were processed with 'Netzsch Thermokinetics' computer program. Kinetics parameters of the first decomposition step (as the simple dehydration process, not complicated by the water hydrolysis with the liberation or the decomposition of the organic ligand) were calculated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Abstract

Additon compounds between triphenylphosphine-oxide and trifluoromethanesulfonates are synthesized and characterized by microanalyses, electrolytic conductance, vibrational (infrared) spectra, absorption spectra in the visible region and thermogravimetric procedures. The results are in agreement with the formulas La(CF3SO3)3 3TPPO 4H2O and Ln(CF3SO3)3·4TPPO. The ligands (TPPO) coordinate through the phosphoryl oxygen. Complex interactions with solvents of different donating capacities are also found. Thermogravimetric studies result in lanthanide trifluoride products.  相似文献   

5.
The thermal dehydration of the potassium Tutton salts K2M(SO4)2·6H2O (M = Mg, Co, Ni, Cu, Zn) was investigated using thermal gravimetric analysis (TG), differential scanning calorimetry (DSC), FTIR, and variable temperature powder X-ray diffraction. While each Tutton salts lost all six waters of hydration when heated to 500 K, the decomposition pathway depended on the divalent metal cation. K2Ni(SO4)2·6H2O lost all six waters in a single step, and K2Cu(SO4)2·6H2O consistently lost water in two steps in capped and uncapped cells. In contrast, multiple decomposition pathways were observed for the magnesium, cobalt, and zinc Tutton salts when capped and uncapped TG cells were used. K2Zn(SO4)2·6H2O lost the waters of hydration in a single step in an uncapped cell and in two steps in a capped cell. Both K2Mg(SO4)2·6H2O and K2Co(SO4)2·6H2O decomposed in a series of steps where the stability of the intermediates depended on the cell configuration. A greater number of phases were often observed in DSC and capped-cells TG experiments. A quasi-equilibrium model is presented that could explain this observation. These results highlight that experimental conditions play a critical role in the observed thermal decomposition pathway of Tutton salts.  相似文献   

6.
Hydrazine hydrate reacts with sulphur dioxide in aqueous solution in the presence of heavier lanthanide(III) ions to give variety of complexes. The nature of product formed is highly pH dependent. Several hydrazine complexes of Ln(III) ions of the compositions Ln(N2H3SOO)3(H2O), Ln2(SO3)3·2N2H4 and N2H5Ln(SO3)2(H2O)2 where Ln = Eu, Gd, Tb or Dy and the precursors for the hydrazinium lanthanide sulphite hydrates, the anhydrous lanthanide hydrazinecarboxylates, Ln(N2H3COO)3 where Ln = Eu, Gd, Tb or Dy have been prepared and characterized by analytical, spectral, thermal and X-ray powder diffraction techniques. The infrared spectral data are in favour of the coordination of hydrazine and water molecules. These complexes decompose in three stages to yield respective oxides as final residue. The final residues were confirmed by their X-ray powder diffraction patterns and TG mass losses. The SEM photographs of some of the oxides show a lot of cracks indicating that large quantity of gases evolved during decomposition.  相似文献   

7.
The ditopic ligand 1, 2‐bis(benzimidazol‐1‐ylmethyl)benzene (L1) as well as its silver(I) complexes [Ag2L12(CF3CO2)2] ( 1 ) and [Ag2L12](CF3SO3)2 · (L1) · 2H2O · 0.5C2H5OH ( 2 ) were prepared and structures characterized by X‐ray crystallography. The AgI atoms in 1 are trigonally coordinated by two NBIm atoms from the arms of L1 and by one O atom of the anion CF3CO2, while those in 2 are only linearly ligated by NBIm. Different silver salts of CF3CO2 and CF3SO3 lead to different configurations of the dimeric unit [Ag2L12]2+: chair‐form in ( 1 ) but boat‐form in ( 2 ). The discrete molecules in both 1 and 2 are assembled into network structures through face‐to‐face π · · · π stacking and edge‐to‐face C—H · · · π interactions in the crystalline state, as well as N—H · · · O and C—H · · · O hydrogen bonds. Solution 1H NMR studies showed the formation of one sole species in solution or a rapid equilibrium was established on the NMR time scale at room temperature.  相似文献   

8.
Reactions of new unsymmetrical pyridyl‐ and imidazoyl‐containing tripodal ligand, 3‐(1H‐imidazol‐1‐yl)‐N,N‐bis(2‐pyridylmethyl)propan‐1‐amine ( L ), with varied silver(I) salts result in formation of three supramolecular architectures [Ag2L2](BF4)2·H2O ( 1 ), [Ag2L2](ClO4)2·H2O ( 2 ) and [Ag3L2](CF3SO3)3 ( 3 ). All the structures were established by single‐crystal X‐ray diffraction analysis. In the solid state, three complexes consist of one‐dimensional infinite chains, in which the conformation and the bridging mode of L for complexes 1 and 2 are the same but 3 different. There are Ag···Ag and π‐π interactions in 3 . The results imply that the shape and size of the anion have great impact on the structure of the complexes. The complexes were also characterized by electrospray mass spectrometry.  相似文献   

9.
Tian  J.  Jiang  H.  Gong  H.  Sun  Z. 《Journal of Thermal Analysis and Calorimetry》2004,77(3):825-831
Hydrated methanesulfonates Ln(CH3SO3)3·nH2O (Ln=La, Ce, Pr, Nd and Yb) and Zn(CH3SO3)2·nH2O were synthesized. The effect of atmosphere on thermal decomposition products of these methanesulfonates was investigated. Thermal decomposition products in air atmosphere of these compounds were characterized by infrared spectrometry, the content of metallic ion in thermal decomposition products were determined by complexometric titration. The results show that the thermal decomposition atmosphere has evident effect on decomposition products of hydrated La(III), Pr(III) and Nd(III) methanesulfonates, and no effect on that of hydrated Ce(III), Yb(III) and Zn(II) methanesulfonates. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
The replacement of the iodide ligands in the complex [PtI2(dpa)] (1) (dpa is 2,2′-dipyridylamine) by silver triflate in acetonitrile afforded the compound [Pt(dpa)(MeCN)2](SO3CF3)2 (2). Homoleptic complexes [Pt(dpa)2](X)2 (3·(X)2) were synthesized by the treatment of [PtI2(dpa)] (1) with 2,2′-dipyridylamine in the presence of silver salts AgX in methanol (X = NO3) or acetonitrile (X = SO3CF3). The deprotonation of the complex [3](SO3CF3)2 to give the homoleptic complex [Pt(dpa-H)2] (4) was performed by two methods, e.g., by the treatment of [3](SO3CF3)2 with 2 equiv. of NaOH in methanol or by the addition of excess Et3N to a suspension of [3](SO3CF3)2 in methanol. The structures of compounds 1–4 were established by elemental analyses, high resolution electrospray ionization mass spectrometry, IR and NMR spectroscopy; the crystal structure of complexes [2](SO3CF3)2, [3](NO3)2·H2O, [3](SO3CF3)2·2H2O, and 4 were determined by single-crystal X-ray diffraction.  相似文献   

11.
Haruyuki Baba  Motohiro Nakano 《Polyhedron》2009,28(9-10):2087-2091
Three novel Mn(III) cyclam complexes, [Mn(cyclam)(NCBH3)2](CF3SO3), [Mn(cyclam)(NCBPh3)2](CF3SO3), and [Mn(cyclam)(NCSe)2](CF3SO3) · H2O, have been synthesized. These complexes are in the high-spin state between 4 and 350 K, and show large zero-field splittings. The crystal structure of [Mn(cyclam)(NCBH3)2](CF3SO3) was determined where the axial elongation of Mn–N bonds is found to be the largest among the homologue complexes. Ligand field in the [Mn(cyclam)X2]+ complex series was examined by angular-overlap model calculation.  相似文献   

12.
Sodium plutonium double sulphate monohydrate, NaPu(SO4)2 · H2O and its lanthanide isomorphs NaLn(SO4)2 · H2O (Ln ≡ Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb) were synthesized and characterised by chemical and X-ray diffraction methods. All these compounds belonged to the same structural family where the Pu3+ or Ln3+ ion is coordinated to nine oxygen atoms. The structure of NaPu(SO4)2 · H2O was found in the present work to be isomorphous with NaCe(SO4)2 · H2O reported in the literature. The unit cells of all the lanthanide compounds showed regular contraction with atomic number.  相似文献   

13.
The thermal decomposition of FeSO4·6H2O was studied by mass spectroscopy coupled with DTA/TG thermal analysis under inert atmosphere. On the ground of TG measurements, the mechanism of decomposition of FeSO4·6H2O is: i) three dehydration steps FeSO4·6H2O FeSO4·4H2O+2H2O FeSO4·4H2O FeSO4·H2O+3H2O FeSO4·H2O FeSO4+H2O ii) two decomposition steps 6FeSO4 Fe2(SO4)3+2Fe2O3+2SO2 Fe2(SO4)3 Fe2O3+3SO2+3/2O2 The intermediate compound was identified as Fe2(SO4)3 and the final product as the hematite Fe2O3.  相似文献   

14.
《Solid State Sciences》2000,2(4):501-506
The preparation and properties of some lanthanide cyclohexaphosphates Ln2P6O18·nH2O (Ln=La, Ce, Pr, Nd, Sm, Er and Yb) are described. Conductivity measurements and IR spectra are presented. The comparison with properties of some other salts, Nd (BrO3)3·9H2O, NdP3O9·3H2O and Nd4 (P4O12)3·13H2O, suggests that the coordination number of Nd3+ in the cyclohexaphosphate is nine.  相似文献   

15.
The following compounds of methanesulfonic acid, CH3SO3H, have been prepared: Cu(CH3SO3)2 · 4 H2O; Zn(CH3SO3)2 · 4 H2O; Mn(CH3SO3)2 · 2 H2O; Cd(CH3SO3)2 · 2 H2O and Ag(CH3SO3). Their thermal behavior has been studied using TG and DTA, together with X-ray analysis of the solid products formed during the heating. The water of hydration is evolved in one step (Mn, Cd) or in two step (Cu, Zn). The intermediate hydrates and the anhydrous salts are crystallized. The anhydrous Zn, Ag and Cd compounds melt, the anhydrous Cd salt undergoing a polymorphic transition before melting. They then begin to decompose in the temperature range 325–440°C. Under an inert atmosphere, the decomposition yields well-crystallized residues of various composition: Cu + Cu2S; Ag + Ag2S (the sulfides being in very minute amounts); MnS; CdS; ZnO + ZnS.  相似文献   

16.
Double complex salts of lanthanum(III) sulphate complex anions with several cobalt(III) ammine complex cations, [Co(NH3)6][La(SO4)3]·H2O (1), (NH4)3[Co(NH3)5 H2O]-[La(SO4)3]2·2H2O (2), and (NH4)3[Co(NH3)4(H2O)2][La(SO4)3]2·2H2O (3), were prepared by the addition of hexaamminecobalt(III), pentaammineaquacobalt(III), and cis- tetra-amminediaquacobalt(III) complexes to the solution containing lanthanum(III) ion and excess ammonium sulphate. The IR spectra of sulphate groups of these double complex salts were much more complicated than those of the almost free sulphate groups such as (NH4)2SO4 and [Co(NH3)6]2(SO4)3·5H2O. Furthermore, values of activation energy in the dehydration process of 1, 2 and 3 were estimated using modified Doyle's and Wiedemann's method. They were 95.6 ± 4.3, 157.1 ± 15.5 and 163.2 ± 20.8 kJ mol?1, respectively. Here, one molecule water is released per molecule of 1, 2 and 3.  相似文献   

17.
Newly designed hetero-dinuclear 3d–4f complex [Cu(L)La (NO3)2(μ-NO3)(H2O)]·EtOH ( 1 ), hetero-tetranuclear 3d–4f complex [Cu(L)Ce (NO3)2(μ-NO3)(OAc)2]2·MeOH ( 2 ) and hetero-multinuclear 3d–4f complexes [{Cu(L)Ln (NO3)3}2][Cu(L)Ln (NO3)3]2 (Ln = Pr ( 3 ) and Nd = ( 4 )) have been self-assembled from the reaction of Cu (OAc)2·H2O, Ln (NO3)3·6H2O (Ln = La, Ce, Pr and Nd) with an unsymmetric salamo-like bisoxime ligand H2L (6-Methoxy-6′-ethoxy-2,2′-[ethylenedioxybis (nitrilomethylidyne)]diphenol) based on a Schiff base condensation of 2-[O-(1-ethoxyamide)]oxime-6-methoxyphenol and 3-ethoxysalicylaldehyde. The structures of complexes 1 – 4 were characterized by elemental analyses, PXRD analyses, IR, UV–Vis spectra, and single-crystal X-ray analyses. In addition, the supramolecular interactions and fluorescence properties of complexes 1 – 4 are discussed in detail. Moreover, the antioxidant activities of the complexes 1 – 4 were determined by superoxide radical-scavenging method in vitro, which indicates that the complexes 1 – 4 all show potential antioxidant properties.  相似文献   

18.
The thermal decomposition of copper(II) complexes with salicylaldehyde S-methylthiosemicarbazone of general formula Cu(HL)X·nH2O (X=Py+NO3, NCS, 0.5SO4) and [Cu(L)NH3]·H2O was investigated in air atmosphere in the interval from room temperature to 1000°C. Decomposition of the complexes occurred in several successive endothermic and exothermic processes, and the residue was in all cases CuO.  相似文献   

19.
Twelve oxamide-bridged Ln(III)–Cu(II) heteropentanuclear complexes Ln[Cu(PMoxd)]4(ClO4)3 · 5H2O (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and PMoxd = the N,N′-Bi(α-pyridylmethyl)-oxamide dianion) and 12 oxamide-bridged Ln(III)–Cu(II) heteropentanuclear complexes with the formula of Ln[Cu(PEoxd)]4(ClO4)3 · 5H2O (PEoxd = the N,N′-Bi(α-pyridylethyl)-oxamide dianion) were synthesized and characterized. The magnetic properties of Gd[Cu(PMoxd)]4(ClO4)3 · 5H2O (7) and Gd[Cu(PEoxd)]4(ClO4)3 · 2H2O (19) show that there are ferromagnetic interactions between Gd(III) and Cu(II) in the complexes with J Cu–Gd = 1.38 cm?1 and J Cu–Gd = 1.00 cm?1, respectively. Fluorescent quenching phenomena for Eu[Cu(PMoxd)]4(ClO4)3 · 5H2O (6) and Tb[Cu(PMoxd)]4(ClO4)3 · 5H2O (8) were also observed.  相似文献   

20.
Syntheses, Crystal Structures, and Thermal Behavior of Er2(SO4)3 · 8 H2O and Er2(SO4)3 · 4 H2O Evaporation of aqueous solutions of Er2(SO4)3 yields light pink single crystals of Er2(SO4)3 · 8 H2O. X-ray single crystal investigations show that the compound crystallizes monoclinically (C2/c, Z = 8, a = 1346.1(3), b = 667.21(1), c = 1816.2(6) pm, β = 101.90(3)°, Rall = 0.0169) with eightfold coordination of Er3+, according to Er(SO4)4(H2O)4. DSC- and temperature dependent X-ray powder investigations show that the decomposition of the hydrate follows a two step mechanism, firstly yielding Er2(SO4)3 · 3 H2O and finally Er2(SO4)3. Attempts to synthesize Er2(SO4)3 · 3 H2O led to another hydrate, Er2(SO4)3 · 4 H2O. There are two crystallographically different Er3+ ions in the triclinic structure (P 1, Z = 2, a = 663.5(2), b = 905.5(2), c = 1046.5(2) pm, α = 93.59(3)°, β = 107.18(2)°, γ = 99.12(3)°, Rall = 0.0248). Er(1)3+ is coordinated by five SO42– groups and three H2O molecules, Er(2)3+ is surrounded by six SO42– groups and one H2O molecule. The thermal decomposition of the tetrahydrate yields Er2(SO4)3 in a one step process. In both cases the dehydration produces the anhydrous sulfate in a modification different from the one known so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号