首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
随着电动汽车和便携式电子产品的快速发展, 人们对于高比能二次电池的需求越来越迫切. 锂金属以其极高的理论比容量和极低的电极电势被视为下一代高比能电池理想负极材料之一. 但是, 锂枝晶的生长及体积膨胀等问题限制了金属锂负极的实际应用. 在金属锂负极中引入三维骨架可以有效抑制锂枝晶生长, 缓解体积膨胀. 其中亲锂骨架可以降低锂的形核能垒, 诱导锂的均匀成核, 更加有效地调控锂沉积行为. 本文结合国内外的研究进展总结了锂金属负极中亲锂骨架的研究成果. 根据亲锂材料的不同对亲锂骨架进行了分类, 总结了各类亲锂骨架在调控锂沉积行为和提高电池性能方面取得的成果, 并对其今后的研究和发展进行了展望.  相似文献   

2.
无机离子交换法从卤水中提锂的研究进展   总被引:2,自引:0,他引:2  
无机离子交换法主要适合于从含锂较低的卤水中提取锂,是开发我国盐湖锂资源的重要研究方向之一。重点介绍了国内外无机离子交换法从卤水中提锂的研究进展,并指出了提锂的技术关键和发展方向。  相似文献   

3.
盐湖卤水提锂分离材料的研究进展   总被引:2,自引:0,他引:2  
采用吸附或离子交换技术直接从中低锂含量盐湖卤水中提取锂是最经济、最理想的提锂技术路线,寻找、研究性能优异的锂的吸附分离材料,是实现这一技术路径的关键。重点阐述了离子交换与吸附法提锂的各种分离材料,并指出了盐湖卤水提锂今后的研究方向。  相似文献   

4.
采用充放电测试和交流阻抗测试研究了硝酸锂作电解液添加剂对锂硫电池电化学性能的影响. 采用电子扫描显微镜观察分析了添加剂对锂负极的影响, 探讨了硝酸锂的作用机理.  结果表明, 采用硝酸锂作为锂硫电池电解液的添加剂, 可以在锂负极表面形成具有钝化负极活性表面及保护锂负极的界面膜.  该膜可以抑制电解液中高价态聚硫离子与锂负极的副反应, 避免在锂负极表面形成不可逆的硫化锂, 从而提高锂硫电池的循环性能和放电容量. 采用硝酸锂作添加剂的锂硫电池首次放电比容量达1172 mA?h/g, 循环100次比容量保持为629 mA?h/g.  相似文献   

5.
用热分析法研究了锂-碳体系.制备熔体和记录冷却曲线是在氩气氛中进行的. 确定了体系在锂和所生成的碳化锂(Li_2C_2)之间这一部分的状态图.锂和碳化锂形成低共熔体,低共熔体的组成靠近纯锂(合碳少于1原子%),其熔点为165°. 用沸点法测定了纯锂以及含碳少于15克原子%的熔体在790-950°的蒸气压.根据蒸气压的等压线确定了在较高温度范围内的液相线. 碳化锂被水完全分解,放出当量体积的乙炔,并无自由态的碳及其他物质残留. 热分析及Debye-Scherrer法的结果指出:碳化锂有几种变体,转化温度约在410°,440°和560°.  相似文献   

6.
锂离子电池非水电解质锂盐的研究进展   总被引:5,自引:1,他引:4  
新型电解质锂盐主要包括含螯合硼阴离子、螯合磷阴离子、全氟膦阴离子、烷基磺酸阴离子、全氟烷基、亚胺基的有机锂盐及有机铝酸锂盐.本文综述了近年来在新型电解质锂盐研究与探索方面的成果,介绍了锂离子电池电解质锂盐的合成方法、组成与结构、化学和电化学性能及其与结构的关系,并阐述今后电解质锂盐研究的可能发展方向及研究方法.  相似文献   

7.
总结了采用溶剂萃取法在盐湖卤水中提取锂资源的三类萃取剂:酸性萃取剂、中性络合萃取剂和碱性萃取剂,分析了三类不同萃取剂在萃取锂工艺过程的优缺点,指出了溶剂萃取法从高镁锂比的盐湖卤水中萃取提锂尚待攻克的技术难题。  相似文献   

8.
传统的锂金属电池存在电解液易泄漏、 易燃等安全隐患, 因此开发不燃性全固态电解质对于解决锂金属电池安全问题至关重要, 而如何有效降低固体电解质与电极之间的界面电阻是发展高性能全固态锂金属电池的关键. 针对如何优化全固态锂金属电池表界面的问题, 本文综述了全固态锂金属电池电极和电解质表面修饰的最新研究进展, 对提高界面接触和降低界面电阻的传统方法进行了探讨, 分析并点评了新型的表面修饰技术, 为进一步提高全固态锂金属电池的综合性能提供新思路. 最后, 对全固态锂金属电池的研究前景进行了展望.  相似文献   

9.
锂对EDTA滴定镁和钙的影响   总被引:5,自引:0,他引:5  
卤水和盐中常量镁和钙的测定,通常采用EDTA络合滴定法,作者在锂镁分离试验工作中发现,锂对镁和钙的测定有较大影响,锂对镁的干扰已有报道,但其消除方法适用范围较窄;锂对钙的干扰尚未见报道。因此,作者进行了一系列探讨,在更宽的锂镁质量比范围内消除锂对镁的干扰,找到  相似文献   

10.
近年来,随着锂电池技术和电动汽车的快速发展和大规模应用,锂资源的市场需求呈现出急剧增长的态势,矿石锂和卤水锂资源开发产量已无法满足市场需求。从地表盐湖卤水、深层卤水等液态资源中提锂具有巨大的市场开发潜力,是当前锂资源开发的重要研究方向。吸附法适用于我国低浓度大体积卤水中锂的提取,而锂离子选择性吸附材料是吸附提锂的核心。本文综述了有机(冠醚)、无机(铝基、锰基和钛基)以及复合型选择性锂吸附材料的制备方法、吸附性能和吸附机理,为研究新型锂吸附材料、克服材料缺陷以及改进吸附剂性能提供参考,以期推动盐湖卤水锂资源高效提取利用的进一步发展。  相似文献   

11.
评述了锂的生理学及其无机毒物学和无机药理学方面的进展。其重点是锂用于狂郁精神病的治疗,锂的亚细膜功能及对新陈代谢过程的影响。  相似文献   

12.
The effect of lithium polysulfides on the cycling of a lithium electrode and the corrosion rate of lithium cathodic deposits in sulfolane electrolytes is studied. Lithium polysulfides are found to affect the shape of polarization curves, the overpotential of electrode processes, and the cycling time. The presence of lithium polysulfides in electrolyte systems increases the cycling time of a lithium electrode and positively affects the quality of lithium cathodic deposits. A suggested reason for the positive effect of lithium polysulfides is the appearance of a surface film on metallic lithium: this film has quite high protective properties but does not inhibit electrochemical processes.  相似文献   

13.
Unstable electrode/solid‐state electrolyte interfaces and internal lithium dendrite penetration hamper the applications of solid‐state lithium‐metal batteries (SSLMBs), and the underlying mechanisms are not well understood. Herein, in situ optical microscopy provides insights into the lithium plating/stripping processes in a gel polymer electrolyte and reveals its dynamic evolution. Spherical lithium deposits evolve into moss‐like and branch‐shaped lithium dendrites with increasing current densities. Remarkably, the on‐site‐formed solid electrolyte interphase (SEI) shell on the lithium dendrite is distinctly captured after lithium stripping. Inducing an on‐site‐formed SEI shell with an enhanced modulus to wrap the lithium precipitation densely and uniformly can regulate dendrite‐free behaviors. An in‐depth understanding of lithium dendrite evolution and its functional SEI shell will aid in the optimization of SSLMBs.  相似文献   

14.
影响锂离子电池安全性的因素   总被引:12,自引:0,他引:12  
胡广侠  解晶莹 《电化学》2002,8(3):245-251
锂离子电池的安全性一直是锂离子电池 ,特别是大型锂离子电池研制、生产、使用中的关键性问题 ,通过对锂离子电池的材料、制造工艺以及使用条件等方面的探讨 ,分析影响锂离子二次电池安全性的各种因素  相似文献   

15.
As is known, the depth of the electrochemical reduction of sulfur and lithium polysulfides, the reduction rate, and the cycle life of lithium–sulfur cells decrease with the electrolyte content. The present paper studies the reasons for the effect of the amount of electrolyte on the depth of sulfur reduction and the cycle life of lithium–sulfur cells. The main reason for the effect of the amount of electrolyte on the depth of the electrochemical reduction of sulfur was shown to be the generation of solvate complexes of lithium polysulfides. The minimum amount of electrolyte required for complete reduction of sulfur during the discharge of lithium–sulfur cells is determined by the composition of the generated solvate complexes of lithium polysulfides. The solvate numbers of the lithium ion in the solvate complexes of lithium polysulfides generted in sulfolane electrolyte systems were evaluated from the experimental data. An analysis of the results shows that the minimum solvate number of lithium ions in the solvate complexes of lithium polysulfides with sulfolane is 1.  相似文献   

16.
二次电池的能量密度已成为推动电动汽车和便携式电子产品技术向前发展的重要指标。使用石墨负极的锂离子电池正接近其理论能量密度的天花板,但仍难以满足高端储能设备的需求。金属锂负极因其极高的理论比容量和极低的电极电位,受到了广泛关注。然而,锂沉积过程中枝晶的生长会导致电池安全性差等问题。电解液对金属锂的沉积有着至关重要的影响。本文设计了一种独特的电解槽体系来进行柱状锂的沉积,研究了不同电解液体系(1mol·L-1LiPF6-碳酸乙烯酯/碳酸二乙酯(EC/DEC,体积比为1:1)、1 mol·L-1 LiPF6-氟代碳酸乙烯酯(FEC,体积分数5%)-EC/DEC (体积比为1:1))对金属锂沉积的影响。对两种电解液中金属锂沉积物长径比的研究表明,电解液的组分可以显著地影响金属锂的沉积形貌,在加入氟代碳酸乙烯酯(FEC)添加剂之后,柱状锂的直径从0.3–0.6μm增加到0.7–1.3μm,长径比从12.5下降到5.6。长径比的降低有助于减小金属锂和电解液的反应面积,提高金属锂负极的利用率和循环寿命。通过考察循环后锂片的表面化学性质,发现FEC的分解增加了锂表面固态电解质界面层中氟化锂(LiF)组分的比例,提高了界面层中锂离子的扩散速率,减少了锂的成核位点,从而给予锂核更大的生长空间,降低了沉积出的柱状锂的长径比。  相似文献   

17.
Unstable electrode/solid-state electrolyte interfaces and internal lithium dendrite penetration hamper the applications of solid-state lithium-metal batteries (SSLMBs), and the underlying mechanisms are not well understood. Herein, in situ optical microscopy provides insights into the lithium plating/stripping processes in a gel polymer electrolyte and reveals its dynamic evolution. Spherical lithium deposits evolve into moss-like and branch-shaped lithium dendrites with increasing current densities. Remarkably, the on-site-formed solid electrolyte interphase (SEI) shell on the lithium dendrite is distinctly captured after lithium stripping. Inducing an on-site-formed SEI shell with an enhanced modulus to wrap the lithium precipitation densely and uniformly can regulate dendrite-free behaviors. An in-depth understanding of lithium dendrite evolution and its functional SEI shell will aid in the optimization of SSLMBs.  相似文献   

18.
Density functional theory calculations were used to examine the formation of lithium halide and lithium alkoxide mixed aggregates with halomethyllithium carbenoids. These mixed aggregates may be the important intermediates in carbenoid reactions where lithium halides are formed as byproducts, or when the mixture has been exposed to small amounts of air. The calculations showed that in the gas phase and in THF solution, mixed dimers, trimers, and tetramers may coexist with free lithium carbenoids, depending on the lithium salt. The calculations also indicated that mixed aggregates may influence the activation free energies of cyclopropanation reactions of lithium carbenoids.  相似文献   

19.
The lithium metal battery has been considered as a promising candidate for next generation batteries.However,safety concerns caused by uncontrollable lithium dendrite growth on lithium anode are severely hampering the commercial application.Metal-organic frameworks(MOFs)become one of the most attractive materials due to the high porosity,structural designability and tunability.With unique open channels and pores as well as functional components in MOFs,the transportation and deposition of lithium ions can be regulated,which leads to enhanced electrochemical prope rties.Various strategies for lithium metal protection are proposed in recent wo rks on applications of MOFs in lithium metal batteries.In this review,we highlight latest key approaches in this field and discuss the prospects for MOFs in advanced Li anodes.  相似文献   

20.
Safe and rechargeable lithium metal batteries have been difficult to achieve because of the formation of lithium dendrites. Herein an emerging electrolyte based on a simple solvation strategy is proposed for highly stable lithium metal anodes in both coin and pouch cells. Fluoroethylene carbonate (FEC) and lithium nitrate (LiNO3) were concurrently introduced into an electrolyte, thus altering the solvation sheath of lithium ions, and forming a uniform solid electrolyte interphase (SEI), with an abundance of LiF and LiNxOy on a working lithium metal anode with dendrite‐free lithium deposition. Ultrahigh Coulombic efficiency (99.96 %) and long lifespans (1000 cycles) were achieved when the FEC/LiNO3 electrolyte was applied in working batteries. The solvation chemistry of electrolyte was further explored by molecular dynamics simulations and first‐principles calculations. This work provides insight into understanding the critical role of the solvation of lithium ions in forming the SEI and delivering an effective route to optimize electrolytes for safe lithium metal batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号