首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
荧光材料基质的结构调制对于调控发光材料的发光性能,探索固体结构-性能关系具有重要的研究意义。本文以Y2SiO5基质为模型,分别利用Si/Al和Si/P取代,以[AlO4]和[PO4]四面体替换[SiO4]四面体,设计合成了一系列组成为Y1.95Si1-xAlxO5-xFx∶0.05Ce3+(x=0.05,x=0.1,x=0.2,x=0.4,x=1)和Y1.95-yCaySi1-yPyO5∶0.05Ce3+(y=0,y=0.02,y=0.04,y=0.06,y=0.08,y=0.2)的荧光材料。结合X射线衍射、荧光光谱、荧光寿命等测试手段对其进行了表征分析。结果表明,在x≤0.2,y≤0.04时得到的产物能够保持Y2SiO5的结构特征,在一定的基质组成替换范围内,设计合成的样品Y1.95Si1-xAlxO5-xFx∶0.05Ce3+、Y1.95-yCaySi1-yPyO5∶0.05Ce3+能提高发光强度,发射光谱呈现蓝移现象。荧光寿命测试表明这两个系列的化合物中Ce3+所处的基质环境变化较小,Ce3+发光也未产生较大的变化。  相似文献   

2.
以氨水和碳酸铵为沉淀剂, 采用氧化-共沉淀法制备了Ce0.65Zr0.25Y0.1O1.95复合氧化物, 并对不同处理温度下制备的样品用热重-差示扫描分析(TG-DSC)、傅里叶变换红外(FT-IR)光谱、X射线衍射(XRD)和表面分析仪(BET)等进行了表征. 结果表明, 共沉淀法得到的沉淀物同时含有羟基和羧基, 随着焙烧温度的升高, 分别在100-170 ℃、250-300 ℃和420-500 ℃温度范围内先后发生脱水、脱羟基和脱羧基反应, 在此过程中固溶体逐渐形成. 提出了由沉淀物转变为Ce0.65Zr0.25Y0.1O1.95复合氧化物的结构转变模型.  相似文献   

3.
The catalytic behaviors of Pd (1.4 wt%) catalysts supported on CeO2-ZrO2-La2O3 mixed oxides with different Ce/Zr molar ratios were investigated for methanol decomposition. Nitrogen adsorption-desorption (BET), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD) and Pd dispersion analysis were used for their characterization. Pd/Ce0.76Zr0.18 La0.06O1.97 catalyst showed the highest BET surface area, best Pd dispersion capability and strongest metal-support interaction. Moreover, XPS showed that there was lattice defect oxygen or mobile oxygen. According to the result of O 1s measurements the lattice defect oxygen or mobile oxygen helped to maintain Pd in a partly oxidized state and increased the activity for methanol decomposition. The Pd/Ce0.76Zr0.18La0.06O1.97 catalyst exhibited the best activity. A 100% conversion of methanol was achieved at around 260 °C, which was about 20-40 °C lower than other catalysts  相似文献   

4.
A series of ceria-incorporated zirconia (Ce1−xZrxO2,x = 0 to 1) solid solutions were prepared by employing the solution combustion synthesis route. The products were characterized by XRD and UV-Vis-NIR diffuse reflectance spectroscopy. The materials are crystalline in nature and the lattice parameters of the solid solution series follow Vegard’s law. Diffuse reflectance spectra of the solid solutions in the UV region show two intense bands at 250 and 297 nm which are assigned respectively to Ce3+ ← O2−and Ce4+ ← O2− charge transfer transitions. The two vibrational bands in 6960 cm−1 and 5168 cm−1 in the NIR region indicate the presence of surface hydroxyl groups on these materials.  相似文献   

5.
以铈锆固溶体(Ce0.5Zr0.5O2)修饰的高比表面积SiC为载体,采用两步浸渍法制备了Ni、Fe和Co基催化剂,研究了其在煤层气催化燃烧脱氧中的催化活性和稳定性. 利用X射线衍射(XRD)、X射线光电子能谱(XPS)、电感耦合等离子体质谱(ICP-MS)、高分辨透射电子显微镜(HRTEM)、比表面积(BET)、热重分析(TGA)和H2程序升温还原(H2-TPR)对催化剂进行了表征. 分析结果表明,Ni、Fe和Co部分进入Ce0.5Zr0.5O2固溶体晶格内部,导致催化剂体相形成更多的缺陷;同时Ce0.5Zr0.5O2固溶体有助于加速金属氧化物和金属之间氧化还原过程的进行,促进了氧吸附、传输和对甲烷的活化. 另外,SiC和Ce0.5Zr0.5O2固熔体良好的抗积碳性能,有效避免了催化剂在富甲烷反应气氛中因积碳而失活,从而使三种催化剂均具有优良的催化燃烧脱氧活性和稳定性. 其中,Co/Ce0.5Zr0.5O2/SiC活性最高,可在320 ℃活化催化甲烷,并在410 ℃实现完全脱氧.  相似文献   

6.
Syntheses, structural and compositional analyses of the filled cubic Ti2Ni-type phase in Zr-Pt-O system have been studied, largely for the platinum-richer compositions. Diffraction quality crystals were grown by annealing an arc-melted composition Zr4Pt2O0.66 at 1600 °C under Ar. The refined composition Zr4.0Pt1.95(1)O0.93(6) (a=12.5063(6) Å, , Z=16) is close to the idealized composition Zr4Pt2O known in several other Zr-T-O systems (T=late 4d or 5d transition element). (This composition has been erroneously reported by ICDD for years as Zr6Pt3O (No. 00-017-0557) and referred to as ε-Zr6Pt3O.) The product is only marginally poor in platinum and oxygen, in contrast to the 1960 reports of metallographic studies (∼Zr4Pt1.62O0.44). Under arc-melting conditions, high yields of the cubic phase are obtained from samples with lower platinum concentrations (Zr4Pt1.74O1.04), whereas samples near the refined cubic composition contain hexagonal Zr5Pt3Ox as well (Mn5Si3-type). The hexagonal structure of binary Zr5Pt3 was also refined (Mn5Si3 type, P63/mcm, a=8.210(1) Å, c=5.385(2) Å) and shown to be non-stoichiometric to at least Zr5Pt2.5.  相似文献   

7.
The transition metals (Cu, Co, and Fe) were applied to modify Ni/Ce0.2Zr0.1 Al0.7Oδcatalyst. The effects of transition metals on the catalytic properties of Ni/Ce0.2Zr0.1 Al0.7Oδautothermal reforming of methane were investigated. The Ni-supported catalysts were characterized by XRD, TPR and XPS. Tests in autothermal reforming of methane to hydrogen showed that the addition of transition metals (Cu and Co) significantly increased the activity of catalyst under the conditions of lower reaction temperature, and Ni/Cu0.05Ce0.2Zr0.1Al0.65Oδwas found to have the highest conversion of CH4 among all catalysts in the operation temperatures ranging from 923 K to 1023 K. TPR, XRD and XPS measurements indicated that the cubic phases of CexZr1-xO2 solid solution were formed in the preparation process of catalysts. Strong interaction was found to exist between NiO and CexZr1-xO2 solid solution. The addition of Cu improved the dispersion of NiO, inhibited the formation of NiAl2O4, and thus significantly promoted the activity of the catalyst Ni/Cu0.05Ce0.2Zr0.1Al0.65Oδ.  相似文献   

8.
Protonic ceramic membrane fuel cells (PCMFCs) based on proton-conducting electrolytes have attracted much attention because of many advantages, such as low activation energy and high energy efficiency. BaZr0.1Ce0.7Y0.2O3−δ (BZCY7) electrolyte based PCMFCs with stable Ba0.5Sr0.5Zn0.2Fe0.8O3−δ (BSZF) perovskite cathode were investigated. Using thin membrane BZCY7 electrolyte (about 15 μm in thickness) synthesized by a modified Pechini method on NiO-BZCY7 anode support, PCMFCs were assembled and tested by selecting stable BSZF perovskite cathode. An open-circuit potential of 1.015 V, a maximum power density of 486 mW cm−2, and a low polarization resistance of the electrodes of 0.08 Ω cm2 was achieved at 700 °C. The results have indicated that BZCY7 proton-conducting electrolyte with BSZF cathode is a promising material system for the next generation solid oxide fuel cells.  相似文献   

9.
A novel BaCe0.4Zr0.3 Sn0.1Y0.2O3−δ (BSY) electrolyte membrane with thickness of 20 μm was fabricated on NiO-based anode substrate via a one-step all-solid-state method followed by a co-sintering at 1450 °C for 5 h. Chemical stability test demonstrated that BSY electrolyte showed adequate chemical stability against CO2 and H2O at intermediate temperature. Besides, the doping of Sn also enhanced the conductivity in humidified hydrogen. With Nd0.7Sr0.3MnO3−σ cathode and hydrogen fuel, the fuel cell generated maximum output of 320, 185 and 105 mW cm−2 at 700, 650 and 600 °C, respectively. The interfacial resistance of the fuel cell was studied under open circuit conditions and the short-term cell performance also confirmed the stability of BSY electrolyte membrane.  相似文献   

10.
High-temperature proton conductors have wide applications in the areas of fuel cells, electrolysis and hydrogen separation. Barium zirconate-based materials are of interest due to their good stability and high protonic conductivity. The reported conductivity of these ceramic materials is generally less than 10−2 S/cm, even at high temperatures. This is not high enough for an electrolyte-supported device to achieve an ASR of less than 0.2 Ω cm2 therefore thin film electrolytes are required for successful application. As BaZrO3-based materials have to be sintered at temperatures as high as 1700 °C, this makes it difficult to find a suitable supporting electrode which will not undergo significant chemical reaction with the BaZrO3-based electrolyte during fabrication of the required electrode supported electrolyte. In this paper, proton-conducting BaZr0.8Y0.2O2.9 was successfully sintered at 1325 °C with a relative density of 96% via addition of 1 wt% ZnO. Fabrication of electrochemical cells using proton-conducting BaZr0.8Y0.2O2.9 as the electrolyte thus becomes possible. The formula of the 1 wt% ZnO added sample is Ba0.97Zr0.77Y0.19Zn0.04O3−δ which exhibits a tetragonal structure with space group P4/mbm (127); a=5.9787(1) Å, c=4.2345(1) Å, V=151.36(1) Å3. It was found that a solid solution was formed for a limited range of Zn doping. Conductivity has been studied as a function of atmosphere (air, dry and wet 5% H2/Ar) with the changes in bulk and grain boundary on changing atmosphere being monitored as a function of time. The total conductivity of Ba0.97Zr0.77Y0.19Zn0.04O3–δ is 1.0×10−3 S/cm above 600 °C therefore it may be used as a proton-conducting thin film electrolyte for efficient electrochemical devices at such temperatures. The grain boundary resistance is insignificant at high temperature for the well-sintered sample.  相似文献   

11.
The local environments for oxygen in yttrium-containing pyrochlores and fluorites, Y2(B1−xBx)2O7 (B=Ti, B′=Sn, Zr) are investigated by using solid state 17O MAS NMR spectroscopy. The quadrupolar coupling constants of the nucleus, 17O are sufficiently small for these ionic oxides, that high-resolution spectra are obtained from the MAS spectra. Different oxygen NMR resonances are observed due to local environments with differing numbers of metal cations (Y3+, Sn4+, Ti4+ and Zr4+), allowing the numbers of different local environments to be quantified and cation mixing to be investigated. Evidence for pyrochlore-like local ordering is detected for Y2Zr2O7, which nominally adopts the fluorite structure.  相似文献   

12.
Electrolytes of Ce1-x-y Y x Mg y O2-0.5x-y were prepared with citrate method and were characterized by inductively coupled plasma-atomic emission spectrometry, energy dispersive spectrometry, powder X-ray diffraction, and impedance spectroscopy. The effect of composition on the structure, conductivity, and stability of the electrolytes were investigated. When 0≤x≤ about 0.2 and 0≤y≤ about 0.05, the electrolytes were all single phase materials of ceria-based solid solution. However, when y> about 0.05, the electrolytes became two-phase materials, Y3+ and Mg2+ co-doped ceria-based solid solution and free MgO. The sample with nominal composition of Ce0.815Y0.065Mg0.12O2-d showed ionic conductivity at 973 K close to or even a little higher than that of similarly prepared Ce0.9Gd0.1O1.95, but had lower cost of raw materials and a little better stability in reducing atmosphere. The existing of free MgO improved the stability of the electrolytes in reducing atmosphere, but too much free MgO reduced the conductivity.  相似文献   

13.
The physicochemical properties of the surface of the Y0.1Ce x Zr1−x O2−δ, La0.1Ce x Zr1−x O2−δ (x=0.1–0.7), and Y0.1Pr0.3Zr0.6O2−δ. complex oxide systems were studied using IR and X-ray photoelectron spectroscopies. An appreciable enrichment of the surface of the solids in rare-earth-metal cations (cerium or praseodymium) during the synthesis was revealed. While cations are uniformly spread over the surface of cerium-zirconium solid solutions, the Y0.1Pr0.3Zr0.6O2−δ surface is covered by the clusters or even a phase of praseodymia. Reductive treatment in hydrogen with subsequent reoxidation results in the segregation of cerium ions on the Y0.1Ce0.3Zr0.6O2−δ surface at a temperature as low as 770 K. Original Russian Text ? A.N. Kharlanov, L.N. Ikryannikova, V.V. Lunin, A. Yu. Stakheev, 2007, published in Zhurnal Fizicheskoi Khimii, 2007, Vol. 81, No. 7, pp. 1271–1277.  相似文献   

14.
The structure, conductivity and water uptake of the oxygen-deficient perovskite-type compound Ba4Ca2Ta2O11 have been investigated. Ba4Ca2Ta2O11 crystallizes in the cryolite structure (cubic, Fm3m SG) with a = 8.4508(2) Å, under dry air. The compound can be partially hydrated up to a maximum water content of approximately 0.52 mol H2O per mol Ba4Ca2Ta2O11. In moist air, the structure symmetry becomes monoclinic (C2/m) and the temperature dependence of total conductivity shows a different behavior because of changes in transport mechanism. Three regions can be observed as a function of temperature. For the low temperature range 200–400 °C, the protonic conduction is prevailing with an activation energy EA = 0.85 eV. In the intermediate temperature range (400–600 °C), O2− anionic and protonic conductions are mixed with an activation energy EA = 0.45 eV and in the third region, for temperatures above 600 °C, O2−conduction is prevailing with an activation energy EA = 0.85 eV.  相似文献   

15.
用共沉淀法制得一系列铈锆比不同的Ce0.3+xZr0.6-xY0.1O1.95储氧材料, 并用于制备了一系列低贵金属Pt+Rh/Ce0.3+xZr0.6-xY0.1O1.95+Al2O3三效催化剂. 用比表面、程序升温还原以及X射线衍射对该系列催化剂进行表征, 结果发现, 催化剂的活性与催化剂中贵金属的还原性能密切相关, 低铈储氧材料比高铈储氧材料更有利于促进贵金属还原, 因而含低铈储氧材料催化剂的活性明显优于含高铈储氧材料催化剂的活性, Pt+Rh/Ce0.35Zr0.55Y0.1O1.95+Al2O3的活性最佳, 对HC, CO和NO的起燃温度最低分别为: 235, 175, 200 ℃. 样品经1000 ℃水热老化之后, 贵金属Pt被烧结而发生迁移, 使得催化剂的活性及还原性能变差, 含低铈材料的催化剂的抗老化性能优于含高铈材料的催化剂, 其中Pt+Rh/Ce0.35Zr0.55Y0.1O1.95+Al2O3的抗老化性能最好.  相似文献   

16.
Differential scanning calorimetry and high temperature oxide melt solution calorimetry are used to study enthalpy of phase transition and enthalpies of formation of Cu2P2O7 and Cu3(P2O6OH)2. α-Cu2P2O7 is reversibly transformed to β-Cu2P2O7 at 338–363 K with an enthalpy of phase transition of 0.15 ± 0.03 kJ mol−1. Enthalpies of formation from oxides of α-Cu2P2O7 and Cu3(P2O6OH)2 are −279.0 ± 1.4 kJ mol−1 and −538.8 ± 2.7 kJ mol−1, and their standard enthalpies of formation (enthalpy of formation from elements) are −2096.1 ± 4.3 kJ mol−1 and −4302.7 ± 6.7 kJ mol−1, respectively. The presence of hydrogen in diphosphate groups changes the geometry of Cu(II) and decreases acid–base interaction between oxide components in Cu3(P2O6OH)2, thus decreasing its thermodynamic stability.  相似文献   

17.
采用共沉淀法制备了Ce0.65Zr0.35O2(CZ)储氧材料, 在传统的水陈化体系中引入了乙醇, 研究了乙醇的加入对CZ储氧材料性能的影响. 对所制备样品进行了傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)、粉末X射线衍射(XRD)、扫描电镜(SEM)、N2吸附-脱附、储氧量(OSC)和H2程序升温还原(H2-TPR)的表征, 并考察了以CZ储氧材料为载体制备的单钯催化剂的三效性能. 结果表明, 乙醇引入陈化体系对样品的结构和性能有显著影响. 以醇水共存体系陈化制备的CZ储氧材料颗粒小、堆积松散、孔径分布宽、孔容大, 具有优异的储氧性能和热稳定性, 经1000 °C焙烧后, 比表面积为29.3 m2·g-1, 储氧量仍高达520 μmol·g-1. 以此为载体制备的单钯催化剂, 空燃比操作窗口宽, 对C3H8、CO、NO的转化明显优于水陈化体系制备的储氧材料所制备的催化剂.  相似文献   

18.
Formation of nano-sized Y2O3-doped CeO2 (YCO) was observed in the chemical reaction between proton conducting Y2O3-doped BaCeO3 (BCY) and CO2 in the temperature range 700-1000 °C, which is generally prepared by wet-chemical methods that include sol-gel, hydrothermal, polymerization, combustion, and precipitation reactions. BCY can capture CO2 of 0.13 g per ceramic gram at 700 °C, which is comparable to that of the well-known Li2ZrO3 (0.15 g per ceramic gram at 600 °C). Powder X-ray diffraction (PXRD), energy dispersive X-ray analysis (EDX), laser particle size analysis (LPSA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ac impedance spectroscopy were employed to characterize the reaction product obtained from reaction between BCY and CO2 and subsequent acid washing. PXRD study reveals presence of fluorite-like CeO2 (a=5.410 (1) Å) structure and BaCO3 in reaction products. TEM investigation of the acid washed product showed the formation of nano-sized material with particle sizes of about 50 nm. The electrical conductivity of acid washed product (YCO) in air was found to be about an order higher than the undoped CeO2 reported in the literature.  相似文献   

19.
In this work we report about a new rare-earth oxoborate β-Dy2B4O9 synthesized under high-pressure/high-temperature conditions from Dy2O3 and boron oxide B2O3 in a B2O3/Na2O2 flux with a walker-type multianvil apparatus at 8 GPa and 1000°C. Single crystal X-ray structure determination of β-Dy2B4O9 revealed: , a=616.2(1) pm, b=642.8(1) pm, c=748.5(1) pm, α=102.54(1)°, β=97.08(1)°, γ=102.45(1)°, Z=2, R1=0.0151, wR2=0.0475 (all data). The compound exhibits a new structure type which is built up from bands of linked BO3- (Δ) and tetrahedral BO4-groups (□). The Dy3+-cations are positioned in the voids between the bands. According to the conception of fundamental building blocks β-Dy2B4O9 can be classified with the notation 2Δ6□:Δ3□=4□=3□Δ. Furthermore we report about temperature-resolved in situ powder diffraction measurements and IR-spectroscopic investigations on β-Dy2B4O9.  相似文献   

20.
Samples in the system Lu2−xYxSi2O7 (0?x?2) have been synthesized following the sol-gel method and calcined to 1300 °C, a temperature at which the β-polymorph is known to be the stable phase for the end-members Lu2Si2O7 and Y2Si2O7. The XRD patterns of all the compositions studied are compatible with the structure of the β-polymorph. Unit cell parameters are calculated as a function of composition from XRD patterns. They show a linear change with increasing Y content, which indicates a solid solubility of β-Y2Si2O7 in β-Lu2Si2O7 at 1300 °C. 29Si MAS NMR spectra of the different members of the system agree with the XRD results, showing a linear decrease of the 29Si chemical shift with increasing Y content. Finally, a correlation reported in the literature to predict 29Si chemical shifts in silicates is applied here to obtain the theoretical variation in 29Si chemical shift values in the system Lu2Si2O7-Y2Si2O7 and the results compare favorably with the values obtained experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号