首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new bis-tetradentate acyclic amine ligand L(Et) has been synthesized from 4,6-bis(aminomethyl)-2-phenylpyrimidine and 2-vinylpyridine. Dinuclear complexes, Mn(II)(2)L(Et)(MeCN)(H(2)O)(3)(ClO(4))(4) (1), Fe(II)(2)L(Et)(H(2)O)(4)(BF(4))(4) (2), Co(II)(2)L(Et)(H(2)O)(3)(MeCN)(2)(BF(4))(4) (3), Ni(II)(2)L(Et)(H(2)O)(4)(BF(4))(4) (4), Ni(II)(2)L(Et)(H(2)O)(4)(ClO(4))(4)·8H(2)O (4'), Cu(II)(2)L(Et)(BF(4))(4)·MeCN (5), Zn(II)(2)L(Et)(BF(4))(2)(BF(4))(2)·?MeCN (6), were obtained from 1 : 2 reactions of L(Et) and the appropriate metal salts in MeCN, whereas in MeOH tetranuclear complexes, Mn(II)(4)(L(Et))(2)(OH)(4)(ClO(4))(4) (7), Fe(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·5/2H(2)O (8), Co(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·3H(2)O (9), Ni(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·4H(2)O (10), Cu(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·3H(2)O (11) and Zn(II)(4)(L(Et))(2)(F)(4)(BF(4))(4) (12), result. Six complexes have been structurally characterized: in all cases each L(Et) is bis-tetradentate and provides a pyrimidine bridge between two metal centres. As originally anticipated, complexes 1, 4' and 6 are dinuclear, while 9, 10 and 12 are revealed to be tetranuclear, with two M(2)(L(Et))(4+) moieties bridged by two pairs of fluoride anions. Weak to moderate antiferromagnetic coupling between the metal centres is a feature of complexes 2, 3, 4, 8, 9 and 10. The dinuclear complexes 1-6 undergo multiple, mostly irreversible, redox processes. However, the pyrimidine-based dicopper(II) complex 5 undergoes a two electron quasi-reversible reduction, Cu(II)(2)→ Cu(I)(2), and this occurs at a more positive potential [E(m) = +0.11 V (E(pc) = -0.03 and E(pa) = +0.26 V) vs. 0.01 M AgNO(3)/Ag] than for either of the dicopper(II) complexes of the analogous pyrazine-based ligands.  相似文献   

2.
Wang X  Vittal JJ 《Inorganic chemistry》2003,42(17):5135-5142
The influences of the nature of reactants and water on the self-assembly of cationic Cu(II) complex structures containing N-(2-pyridylmethyl)glycine (Hpgly) and N-(2-pyridylmethyl)-l-alanine (Hpala) ligands have been investigated. A metallamacrocycle [Cu(6)(pgly)(3)(spgly)(3)] (ClO(4))(6).9H(2)O has been formed by the reaction of [Cu(pgly)(2)].2H(2)O with Cu(ClO(4))(2).6H(2)O. The hexameric cation has Schiff base and reduced Schiff base ligands alternatively bonded to Cu(II) to provide cyclohexane-like conformation with a cavity diameter of 9.4 A. The reaction of Cu(ClO(4))(2).6H(2)O with Hpgly.HCl yielded [Cu(pgly)(H(2)O)](ClO(4)), which is presumed to have 1D coordination polymeric structure. A [K subset [12-MC-3]] metallacrown, [K(ClO(4))(3)[Cu(3)(pala)(3)]](ClO(4)) has been isolated by reacting Cu(ClO(4))(2) with Kpala in MeCN/MeOH. This [K subset [12-MC-3]] metallacrown further reacts with water to form an infinite 1D coordination polymer [Cu(pala)(H(2)O)(ClO(4))](n)(), which can also be obtained by conducting the reaction in aqueous MeOH.  相似文献   

3.
In the presence of ammonia, the reactions of cyanamide and Cu(II) ions with different organic blocking ligands afford three hydrogencyanamido bridged dinuclear complexes: [(dmbpy)(4)Cu(2)(HNCN)](ClO(4))(3)·H(2)O (1, dmbpy = 4,4'-dimethyl-2,2'-bipyridine), [(phen)(4)Cu(2)(HNCN)](ClO(4))(3)·2H(2)O (2, phen = 1,10-phenanthroline) and [(bpy)(2)Cu(2)(HNCN)(2)(ClO(4))(2)] (3, bpy = 2,2'-bipyridine), respectively. However, using the di(2-pyridyl)ketone (dpk) ligand in similar experimental conditions, an interesting reaction between the hydrogencyanamido anion and dpk is observed. Using Cu(ClO(4))·6H(2)O or Co(ClO(4))·6H(2)O as the metal source, it gives the mixed bridged hexanuclear complex [(dpk·OMe)(4)(dpk·NCN)(2)Cu(6)(H(2)O)(2)](ClO(4))(4) (4), or the mononuclear complex [(dpk·OMe)(dpk·HNCN)Co](ClO(4))·2H(2)O (5), respectively. Their structures are characterized by single crystal X-ray diffraction analyses. Magnetic measurements reveal moderate antiferromagnetic interaction between the Cu(II) ions in complex 1, weak ferromagnetic coupling in complex 2, and strong antiferromagnetic interactions for complexes 3 and 4. The magnetostructural correlations of these complexes are discussed.  相似文献   

4.
Eight oxamato-bridged heterotrinuclear Ni(II)Cu(II)Ni(II) complexes of formula ([Ni(H(2)O)(dpt)](2)(mu-Cu(H(2)O)(opba)))(ClO(4))2 (1), ([Ni(H(2)O)(dien)](2)(mu-Cu(pba)))(ClO(4))(2).6H(2)O (2), ([Ni(H(2)O)(Medpt)](2)(mu-Cu(OHpba)))(ClO(4))(2).4H(2)O (3), ([Ni(H(2)O)(dien)](2)(mu-Cu(Me(2)pba)))(ClO(4))(2).2.5H(2)O (4), ([Ni(H(2)O)(dpt)](2)(mu-Cu(Me(2)pba)))(ClO(4))(2).2H(2)O (5), ([Ni(H(2)O)(dien)](2)(mu-Cu(OHpba)))(ClO(4))(2).4H(2)O (6), ([Ni(2)(dpt)(2)(mu-Cu(H(2)O)(pba))](2)(mu-N(3))(2))Na(2)(ClO(4))(4).6H(2)O (7), and ([Cu(H(2)O)(2)(dpt)Ni(2)(H(2)O)(dpt)(2)](mu-H(2)Me(2)pba(2-)))(ClO(4))(4).3H(2)O (8) in which opba = o-phenylenbis(oxamato), pba = 1,3-propylenebis(oxamato), OHpba = 2-hydroxy-1,3-propylenebis(oxamato), Me(2)pba = 2,2-dimethyl-1,3-propylenbis(oxamato), dpt = 3,3'-diaminodipropylamine, dien = 2,2'-diaminodiethylamine, and Medpt = 3,3'-diamino-N-methyldipropylamine were synthesized and characterized. The crystal structures of 1, 7, and 8 were solved. For complex 1, the trinuclear entities are linked by hydrogen bonds forming a one-dimensional system, and for complex 8, the presence of van der Waals interactions gives a one-dimensional system, too. For complex 7, the trinuclear entities are self-assembled by azido ligands, given a hexanuclear system; each of these hexanuclear entities are self-assembled through two [Na(O)(3)(H(2)O)(3)] octahedral-sharing one-edge entities, given a one-dimensional system. The magnetic behavior of complexes 2-7 was investigated by variable-temperature magnetic susceptibility measurements. Complexes 2-6 exhibit the minimum characteristic of this kind of polymetallic species with an irregular spin state structure. The Jvalue through the oxamato bridge varied between -88 cm(-1) (for 6) and -111.2 cm(-1) (for 5). For complex 7, the values obtained were J(1) = -101.7 cm(-1) (through the oxamato ligand) and J(2) = -3.2 cm(-1) (through the azido ligand).  相似文献   

5.
The copper(II) complexes [Cu(4)(1,3-tpbd)(2)(H(2)O)(4)(NO(3))(4)](n)(NO(3))(4n)·13nH(2)O (1), [Cu(4)(1,3-tpbd)(2)(AsO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (2), [Cu(4)(1,3-tpbd)(2)(PO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (3), [Cu(2)(1,3-tpbd){(PhO)(2)PO(2)}(2)](2)(ClO(4))(4) (4), and [Cu(2)(1,3-tpbd){(PhO)PO(3)}(2)(H(2)O)(0.69)(CH(3)CN)(0.31)](2)(BPh(4))(4)·Et(2)O·CH(3)CN (5) [1,3-tpbd = N,N,N',N'-tetrakis(2-pyridylmethyl)-1,3-benzenediamine, BPh(4)(-) = tetraphenylborate] were prepared and structurally characterized. Analyses of the magnetic data of 2, 3, 4, and [Cu(2)(2,6-tpcd)(H(2)O)Cl](ClO(4))(2) (6) [2,6-tpcd = 2,6-bis[bis(2-pyridylmethyl)amino]-p-cresolate] show the occurrence of weak antiferromagnetic interactions between the copper(II) ions, the bis-terdentate 1,3-tpbd/2,6-tpcd, μ(4)-XO(4) (X = As and P) μ(1,2)-OPO and μ-O(phenolate) appearing as poor mediators of exchange interactions in this series of compounds. Simple orbital symmetry considerations based on the structural knowledge account for the small magnitude of the magnetic couplings found in these copper(II) compounds.  相似文献   

6.
One flexible, discrete coordination cage [Cu(2)(3-BPFA)(4)(H(2)O)(2)](ClO(4))(4).4CH(3)OH (), and two cation-clusters with micro(2)-Cl bridging [Ni(2)(micro-Cl)(3-BPFA)(4)(H(2)O)(2)](ClO(4))(3) () and [Co(2)(micro-Cl)(3-BPFA)(4)(H(2)O)(2)](ClO(4))(4).4CH(3)OH (), containing the ferrocenyl functionality were prepared via coordination-driven self-assembly and Cl-anion template from Cu(II), Ni(II) and Co(II) salts and a flexible two-arm molecule 1,1-bis[(3-pyridylamino)carbonyl]ferrocene (3-BPFA).  相似文献   

7.
When the ligand 1,4,5-triazanaphthalene (abbreviated as tan) is reacted with Cu(II) BF(4)(-) and ClO(4)(-) salts, a variety of mononuclear compounds has been found, all with the [Cu(tan)(4)] unit and varying amounts of weakly coordinating axial ligands and lattice solvents. Reproducible compounds formed include two purple compounds, analyzing as [Cu(tan)(4)](ClO(4))(2)(CH(3)OH)(2)(H(2)O) (1) and [Cu(tan)(4)](BF(4))(2)(CH(3)OH)(1.5)(H(2)O) (3), and two blue compounds, analyzing as [Cu(tan)(4)](ClO(4))(2)(H(2)O)(2) (2) and [Cu(tan)(4)](2)(BF(4))(2)(H(2)O)(2) (4). Upon standing at room temperature, red-coloured, mixed-valence dinuclear-based 3D coordination polymers are formed by conversion of the purple/blue products, of which [Cu(2)(tan)(4)](n)(BF(4))(3n) (5) and the isomorphic methanol-water adduct [Cu(tan)(4)](n)(BF(4))(3n)(CH(3)OH)(n)(H(2)O)(5n) (5A) are presented in this paper. In addition a fully reduced dinuclear Cu(I) compound of formula [Cu(2)(tan)(3)(ClO(4))(2)] (7) has been observed, and structurally characterized, as a rare three-blade propeller structure, with a Cu-Cu distance of 2.504 ?.  相似文献   

8.
Reaction of Cu(ClO(4))(2) x 6H(2)O with a racemic mixture of the novel chiral ligand N-(1,2-bis(2-pyridyl)ethyl)pyridine-2-carboxamide (PEAH) affords only the homochiral dimeric copper(II) complexes [Cu(2)((R)()PEA)(2)](ClO(4))(2) and [Cu(2)((S)()PEA)(2)](ClO(4))(2) in a 1:1 ratio. The phenomenon of molecular self-recognition is also observed when a racemic mixture of the monomeric copper(II) complex [Cu((R(S))()PEA)(Cl)(H(2)O)] is converted into the homochiral dimeric species [Cu(2)((R(S))()PEA)(2)](ClO(4))(2) via reaction with Ag(+) ion. This is the first report of direct conversion of a racemic mixture of a chiral monomeric copper(II) complex to a mixture of the homochiral dimers.  相似文献   

9.
Copper(II) complexes of three bis(tacn) ligands, [Cu(2)(T(2)-o-X)Cl(4)] (1), [Cu(2)(T(2)-m-X)(H(2)O)(4)](ClO(4))(4).H(2)O.NaClO(4) (2), and [Cu(2)(T(2)-p-X)Cl(4)] (3), were prepared by reacting a Cu(II) salt and L.6HCl (2:1 ratio) in neutral aqueous solution [T(2)-o-X = 1,2-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene; T(2)-m-X = 1,3-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene; T(2)-p-X = 1,4-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene]. Crystals of [Cu(2)(T(2)-m-X)(NPP)(mu-OH)](ClO(4)).H(2)O (4) formed at pH = 7.4 in a solution containing 2 and disodium 4-nitrophenyl phosphate (Na(2)NPP). The binuclear complexes [Cu(2)(T(2)-o-XAc(2))(H(2)O)(2)](ClO(4))(2).4H(2)O (5) and [Cu(2)(T(2)-m-XAc(2))(H(2)O)(2)](ClO(4))(2).4H(2)O (6) were obtained on addition of Cu(ClO(4))(2).6H(2)O to aqueous solutions of the bis(tetradentate) ligands T(2)-o-XAc(2) (1,2-bis((4-(carboxymethyl)-1,4,7-triazacyclonon-1-yl)methyl)benzene and T(2)-m-XAc(2) (1,3-bis((4-(carboxymethyl)-1,4,7-triazacyclonon-1-yl)methyl)benzene), respectively. In the binuclear complex, 3, three N donors from one macrocycle and two chlorides occupy the distorted square pyramidal Cu(II) coordination sphere. The complex features a long Cu...Cu separation (11.81 A) and intermolecular interactions that give rise to weak intermolecular antiferromagnetic coupling between Cu(II) centers. Complex 4 contains binuclear cations with a single hydroxo and p-nitrophenyl phosphate bridging two Cu(II) centers (Cu...Cu = 3.565(2) A). Magnetic susceptibility studies indicated the presence of strong antiferromagnetic interactions between the metal centers (J = -275 cm(-1)). Measurements of the rate of BNPP (bis(p-nitrophenyl) phosphate) hydrolysis by a number of these metal complexes revealed the greatest rate of cleavage for [Cu(2)(T(2)-o-X)(OH(2))(4)](4+) (k = 5 x 10(-6) s(-1) at pH = 7.4 and T = 50 degrees C). Notably, the mononuclear [Cu(Me(3)tacn)(OH(2))(2)](2+) complex induces a much faster rate of cleavage (k = 6 x 10(-5) s(-1) under the same conditions).  相似文献   

10.
Bera M  Wong WT  Aromi G  Ribas J  Ray D 《Inorganic chemistry》2004,43(16):4787-4789
In methanol, the reaction of Cu(ClO(4))(2).6H(2)O and the hexadentate amine phenol ligand (H(2)bahped) in the presence of triethylamine affords a tetranuclear copper(II) complex having the formula [Cu(4)(mu(4)-O)(bahped)(2)](ClO(4))(2). The X-ray structure of this complex shows a tetrahedral central [Cu(II)(4)(mu(4)-O)]unit coordinated to two hexadentate bridging (via the central ethylenediamine part) ligands. The compound is the first example of a mu(4)-oxo tetranuclear copper(II) complex without any bridging ligand along the six tetrahedral edges. Variable-temperature magnetic data clearly show an S(t) = 0 spin ground state for antiferromagnetic interactions between four (2)B(2) copper(II) ions in a dimer of dimers.  相似文献   

11.
Conventional reactions of the versatile multidentate ligand 5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one (HmtpO) with metallic(II) salts lead to three novel multidimensional complexes [Cu(HmtpO)(2)(H(2)O)(3)](ClO(4))(2)·H(2)O (1), {[Cu(HmtpO)(2)(H(2)O)(2)](ClO(4))(2)·2HmtpO}(n) (2) and {[Co(HmtpO)(H(2)O)(3)](ClO(4))(2)·2H(2)O}(n) (3). In each compound, the triazolopyrimidine ligand shows a different and unusual coordination mode, giving rise to structures with diverse topologies and dimensionality. Compound 1 is a monomeric complex, in which HmtpO shows both N3-monodentate and N1,O71-bidentate modes. 2 is a bidimensional framework with the ligand showing a N3,O71 bidentate-bridging mode. The structure of 3 consists of 1D chains, in which HmtpO displays a N1,N3,O71-tridentate-bridging mode. It should be noted that these coordination modes of the HmtpO ligand are unique in the case of compounds 2 and 3. On the other hand, the magnetic properties of the polynuclear complexes 2 and 3 have been studied showing weak ferromagnetic and antiferromagnetic behaviour, respectively.  相似文献   

12.
Bian HD  Gu W  Xu JY  Bian F  Yan SP  Liao DZ  Jiang ZH  Cheng P 《Inorganic chemistry》2003,42(14):4265-4267
The first mu(3)-oxalato-bridged copper(II) complex, [[Cu(3)(L)(3)(mu(3)-C(2)O(4))][Cu(L)(H(2)O)](ClO(4))(2)] x 0.5(H(2)O) x 0.5(CH(3)OH), where HL = N-ethyl-N'-salicylidene-1,2-diaminoethane, has been synthesized and characterized by variable-temperature magnetic susceptibility measurement. The complex exhibits ferromagnetic coupling between the oxalato-bridged copper atoms and antiferromagnetic coupling between the oxygen-bridged copper atoms.  相似文献   

13.
Several new Cu(II) derivatives of the 1,3-bis(dimethylamino)-2-propanolato (bdmap) ligand with formula [Cu(2)(bdmap)(acac)(NH(3))(3)(MeOH)](ClO(4))(2), [Cu(2)(bdmap)(NO(2))(3)(H(2)O)](4) and [Cu(2)(bdmap)(OH)(ox)(0.5)(H(2)O)(2)](n)(ClO(4))(n)xnH(2)O were synthesized and characterized both structurally and magnetically. Dinuclear compound crystallizes in the monoclinic system, space group P2(1)/c, octanuclear compound crystallizes in the triclinic space group P1 and the 1-D alternating system crystallizes in the monoclinic system, space group P2/n. Magnetic analysis indicates strong antiferromagnetic coupling for all derivatives, mainly due to the interaction through the alkoxo O-atom of the bdmap ligand. The effect on the magnetic behaviour of the additional bridging ligands is analysed.  相似文献   

14.
Dinucleating ligands having two metal-binding sites bridged by an imidazolate moiety, Hbdpi, HMe(2)bdpi, and HMe(4)bdpi (Hbdpi = 4,5-bis(di(2-pyridylmethyl)aminomethyl)imidazole, HMe(2)bdpi = 4,5-bis((6-methyl-2-pyridylmethyl)(2-pyridylmethyl)aminomethyl)imidazole, HMe(4)bdpi = 4,5-bis(di(6-methyl-2-pyridylmethyl)aminomethyl)imidazole), have been designed and synthesized as model ligands for copper-zinc superoxide dismutase (Cu,Zn-SOD). The corresponding mononucleating ligands, MeIm(Py)(2), MeIm(Me)(1), and MeIm(Me)(2) (MeIm(Py)(2) = (1-methyl-4-imidazolylmethyl)bis(2-pyridylmethyl)amine, MeIm(Me)(1) = (1-methyl-4-imidazolylmethyl)(6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine, MeIm(Me)(2) = (1-methyl-4-imidazolyl-methyl)bis(6-methyl-2-pyridylmethyl)amine), have also been synthesized for comparison. The imidazolate-bridged Cu(II)-Cu(II) homodinuclear complexes represented as [Cu(2)(bdpi)(CH(3)CN)(2)](ClO(4))(3).CH(3)CN.3H(2)O (1), [Cu(2)(Me(2)bdpi)(CH(3)CN)(2)](ClO(4))(3) (2), [Cu(2)(Me(4)bdpi)(H(2)O)(2)](ClO(4))(3).4H(2)O (3), a Cu(II)-Zn(II) heterodinuclear complex of the type of [CuZn(bdpi)(CH(3)CN)(2)](ClO(4))(3).2CH(3)CN (4), Cu(II) mononuclear complexes of [Cu(MeIm(Py)(2))(CH(3)CN)](ClO(4))(2).CH(3)CN (5), [Cu(MeIm(Me)(1))(CH(3)CN)](ClO(4))(2)( )()(6), and [Cu(MeIm(Me)(2))(CH(3)CN)](ClO(4))(2)( )()(7) have been synthesized and the structures of complexes 5-7 determined by X-ray crystallography. The complexes 1-7 have a pentacoordinate structure at each metal ion with the imidazolate or 1-methylimidazole nitrogen, two pyridine nitrogens, the tertiary amine nitrogen, and a solvent (CH(3)CN or H(2)O) which can be readily replaced by a substrate. The reactions between complexes 1-7 and hydrogen peroxide (H(2)O(2)) in the presence of a base at -80 degrees C yield green solutions which exhibit intense bands at 360-380 nm, consistent with the generation of hydroperoxo Cu(II) species in all cases. The resonance Raman spectra of all hydroperoxo intermediates at -80 degrees C exhibit a strong resonance-enhanced Raman band at 834-851 cm(-1), which shifts to 788-803 cm(-1) (Deltanu = 46 cm(-1)) when (18)O-labeled H(2)O(2) was used, which are assigned to the O-O stretching frequency of a hydroperoxo ion. The resonance Raman spectra of hydroperoxo adducts of complexes 2 and 6 show two Raman bands at 848 (802) and 834 (788), 851 (805), and 835 (789) cm(-1) (in the case of H(2)(18)O(2), Deltanu = 46 cm(-1)), respectively. The ESR spectra of all hydroperoxo complexes are quite close to those of the parent Cu(II) complexes except 6. The spectrum of 6 exhibits a mixture signal of trigonal-bipyramid and square-pyramid which is consistent with the results of resonance Raman spectrum.  相似文献   

15.
The treatment of Fe(ClO(4))(2)·6H(2)O or Fe(ClO(4))(3)·9H(2)O with a benzimidazolyl-rich ligand, N,N,N',N'-tetrakis[(1-methyl-2-benzimidazolyl)methyl]-1,2-ethanediamine (medtb) in alcohol/MeCN gives a mononuclear ferrous complex, [Fe(II)(medtb)](ClO(4))(2)·?CH(3)CN·?CH(3)OH (1), and four non-heme alkoxide-iron(III) complexes, [Fe(III)(OMe)(medtb)](ClO(4))(2)·H(2)O (2, alcohol = MeOH), [Fe(III)(OEt)(Hmedtb)](ClO(4))(3)·CH(3)CN (3, alcohol = EtOH), [Fe(III)(O(n)Pr)(Hmedtb)](ClO(4))(3)·(n)PrOH·2CH(3)CN (4, alcohol = n-PrOH), and [Fe(III)(O(n)Bu)(Hmedtb)](ClO(4))(3)·3CH(3)CN·H(2)O (5, alcohol = n-BuOH), respectively. The alkoxide-iron(III) complexes all show 1) a Fe(III)-OR center (R = Me, 2; Et, 3; (n)Pr, 4; (n)Bu, 5) with the Fe-O bond distances in the range of 1.781-1.816 ?, and 2) a yellow color and an intense electronic transition around 370 nm. The alkoxide-iron(III) complexes can be reduced by organic compounds with a cis,cis-1,4-diene moiety via the hydrogen atom abstraction reaction.  相似文献   

16.
Three new supramolecular entities of Cu(II) were synthesized and characterized: [(Cu(H(2)O)(tmen))(2)(mu-Cu(H(2)O)(opba))](2)[(ClO(4))(2)](2).2H(2)O (1), [(Cu(H(2)O)(tmen))(2) (mu-Cu(H(2)O) (Me(2)pba))](2)[(ClO(4))(2)](2) (2), and [(Cu(H(2)O)(tmen))(Cu(tmen))(mu-Cu(OHpba))](n)() ((ClO(4))(2))(n)().nH(2)O (3), where opba = o-phenylenbis(oxamato), Me(2)pba = 2,2-dimethyl-1,3-propylenbis(oxamato), OHpba = 2-hydroxy-1,3-propylenbis(oxamato), and tmen = N,N,N'N'-tetramethylethylenediamine. The crystal structures of 1, 2, and 3 were solved. Complex 1 crystallizes in the monoclinic system, space group C2/c with a = 20.572(4) A, b = 17.279(6) A, c = 22.023(19) A, beta = 103.13(4) degrees, and Z = 8. Complex 2 crystallizes in the monoclinic system, space group P2(1)/c, with a = 16.7555(7) A, b = 13.5173(5) A, c = 17.1240(7) A, beta = 104.9840(10) degrees, and Z = 4. Complex 3 crystallizes in the orthorhombic system, space group Pca2(1) with a = 21.2859(4) A, b = 12.8286(10) A, c = 12.6456(2) A, and Z = 4. The three complexes are very similar in structure: a trinuclear Cu(II) complex with the two terminal Cu(II) ions blocked by N,N,N',N'-tetramethylethylenediamine, but with a different environment in the Cu(II) central ion. In the case of complex 1, two of these trinuclear entities are packed with a short distance between the central Cu(II) ions of two separate entities forming a hexanuclear-type compound. In the case of 2, two of these trinuclear entities are linked by a hydrogen bond between a water molecule of one terminal Cu(II) and one oxygen atom of the oxamato ligand of the neighboring entity, also forming a hexanuclear complex. In the case of complex 3, the intermolecular linkages give a one-dimensional system where the OH groups of the OHpba entities are linked to the terminal Cu(II) of the neighboring entities. The magnetic properties of the three complexes were studied by susceptibility measurements vs temperature. For complex 1, an intramolecular J value of -312.1 cm(-)(1) and a contact dipolar interaction of -0.44K were found. For complex 2 and 3 the fit was made by the irreducible tensor operator formalism (ITO). The values obtained were as follows: J(1) = -333.9 cm(-)(1) and J(2) = 0.67 cm(-)(1) for 2 and J(1) = -335.9 cm(-)(1) and J(2) = 3.5 cm(-)(1) for 3.  相似文献   

17.
The compound [Cu(II)(2)(D(1))(H(2)O)(2)](ClO(4))(4) (D(1) = dinucleating ligand with two tris(2-pyridylmethyl)amine units covalently linked in their 5-pyridyl positions by a -CH(2)CH(2)- bridge) selectively promotes cleavage of DNA on oligonucleotide strands that extend from the 3' side of frayed duplex structures at a site two residues displaced from the junction. The minimal requirements for reaction include a guanine in the n (i.e. first unpaired) position of the 3' overhang adjacent to the cleavage site and an adenine in the n position on the 5' overhang. Recognition and strand scission are independent of the nucleobase at the cleavage site. The necessary presence of both a reductant and dioxygen indicates that the intermediate responsible for cleavage is produced by the activation of dioxygen by a copper(I) form of the dinuclear complex. The lack of sensitivity to radical quenching agents and the high level of site selectivity in scission suggest a mechanism that does not involve a diffusible radical species. The multiple metal center exhibits a synergy to promote efficient cleavage as compared to the action of a mononuclear analogue [Cu(II)(TMPA)(H(2)O)](ClO(4))(2) (TMPA = tris(2-pyridylmethyl)amine) and [Cu(OP)(2)](2+) (OP = 1,10-phenanthroline) at equivalent copper ion concentrations. The dinuclear complex, [Cu(II)(2)(D(1))(H(2)O)(2)](ClO(4))(4), is even capable of mediating efficient specific strand scission at concentrations where [Cu(OP)(2)](2+) does not detectably modify DNA. The unique coordination and reactivity properties of [Cu(II)(2)(D(1))(H(2)O)(2)](ClO(4))(4) are critical for its efficiency and site selectivity since an analogue, [Cu(II)(2)(DO)(Cl(2))](ClO(4))(2), where DO is a dinucleating ligand very similar to D(1), but with a -CH(2)OCH(2)- bridge, exhibits only nonselective cleavage of DNA. The differences in the reactivity of these two complexes with DNA and their previously established interaction with dioxygen suggest that specific strand scission is a function of the orientation of a reactive intermediate.  相似文献   

18.
When [Cu(3)(phis)(3)](ClO(4))(3), obtained from Cu(ClO(4))(2).6H(2)O with the Na(+) or K(+) salt of the phis anion (Hphis = N-(2-pyridylmethyl)-l-histidine), is reacted with LiClO(4), the tricopper cationic structure rearranged to accommodate a Li(+) ion to form [(ClO(4))Li[Cu(3)(phis)(3)]](ClO(4))(3) which can also be prepared directly by reacting Cu(ClO(4))(2).6H(2)O with the Li(+) salt of the phis anion.  相似文献   

19.
The synthesis and magnetic properties of 13 new homo- and heterometallic Co(II) complexes containing the artificial amino acid 2-amino-isobutyric acid, aibH, are reported: [Co(II)(4)(aib)(3)(aibH)(3)(NO(3))](NO(3))(4)·2.8CH(3)OH·0.2H(2)O (1·2.8CH(3)OH·0.2H(2)O), {Na(2)[Co(II)(2)(aib)(2)(N(3))(4)(CH(3)OH)(4)]}(n) (2), [Co(II)(6)La(III)(aib)(6)(OH)(3)(NO(3))(2)(H(2)O)(4)(CH(3)CN)(2)]·0.5[La(NO(3))(6)]·0.75(ClO(4))·1.75(NO(3))·3.2CH(3)CN·5.9H(2)O (3·3.2CH(3)CN·5.9H(2)O), [Co(II)(6)Pr(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Pr(NO(3))(5)]·0.41[Pr(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.59[Co(NO(3))(3)(H(2)O)]·0.2(ClO(4))·0.25H(2)O (4·0.25H(2)O), [Co(II)(6)Nd(III)(aib)(6)(OH)(3)(NO(3))(2.8)(CH(3)OH)(4.7)(H(2)O)(1.5)]·2.7(ClO(4))·0.5(NO(3))·2.26CH(3)OH·0.24H(2)O (5·2.26CH(3)OH·0.24H(2)O), [Co(II)(6)Sm(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Sm(NO(3))(5)]·0.44[Sm(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.56[Co(NO(3))(3)(H(2)O)]·0.22(ClO(4))·0.3H(2)O (6·0.3H(2)O), [Co(II)(6)Eu(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)OH)(4.87)(H(2)O)(1.13)](ClO(4))(2.5)(NO(3))(0.5)·2.43CH(3)OH·0.92H(2)O (7·2.43CH(3)OH·0.92H(2)O), [Co(II)(6)Gd(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.9)(H(2)O)(1.2)]·2.6(ClO(4))·0.5(NO(3))·2.58CH(3)OH·0.47H(2)O (8·2.58CH(3)OH·0.47H(2)O), [Co(II)(6)Tb(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Tb(NO(3))(5)]·0.034[Tb(NO(3))(3)(ClO(4))(0.5)(H(2)O)(0.5)]·0.656[Co(NO(3))(3)(H(2)O)]·0.343(ClO(4))·0.3H(2)O (9·0.3H(2)O), [Co(II)(6)Dy(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.92)(H(2)O)(1.18)](ClO(4))(2.6)(NO(3))(0.5)·2.5CH(3)OH·0.5H(2)O (10·2.5CH(3)OH·0.5H(2)O), [Co(II)(6)Ho(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·0.27[Ho(NO(3))(3)(ClO(4))(0.35)(H(2)O)(0.15)]·0.656[Co(NO(3))(3)(H(2)O)]·0.171(ClO(4)) (11), [Co(II)(6)Er(III)(aib)(6)(OH)(4)(NO(3))(2)(CH(3)CN)(2.5)(H(2)O)(3.5)](ClO(4))(3)·CH(3)CN·0.75H(2)O (12·CH(3)CN·0.75H(2)O), and [Co(II)(6)Tm(III)(aib)(6)(OH)(3)(NO(3))(3)(H(2)O)(6)]·1.48(ClO(4))·1.52(NO(3))·3H(2)O (13·3H(2)O). Complex 1 describes a distorted tetrahedral metallic cluster, while complex 2 can be considered to be a 2-D coordination polymer. Complexes 3-13 can all be regarded as metallo-cryptand encapsulated lanthanides in which the central lanthanide ion is captivated within a [Co(II)(6)] trigonal prism. dc and ac magnetic susceptibility studies have been carried out in the 2-300 K range for complexes 1, 3, 5, 7, 8, 10, 12, and 13, revealing the possibility of single molecule magnetism behavior for complex 10.  相似文献   

20.
The imidazolate-bridged binuclear copper(II)-copper(II) complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) and related mononuclear complexes [Cu(dien)(H(2)O)](ClO(4))(2), [Cu(dien)(Him)](ClO(4))(2) were synthesized with diethylenetriamine (dien) as capping ligand. The crystal structure of mononuclear [Cu(dien)(Him)](ClO(4))(2) and binuclear complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) have been determined by single crystal X-ray diffraction methods. The mononuclear complex [Cu(dien)(Him)](ClO(4))(2) crystallizes in the orthorhombic, Pca2(1) with a = 9.3420(9) A, b = 12.3750(9) A, c = 14.0830(9) A, beta = 90.000(7)(o) and Z = 4 and binuclear complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) crystallizes in the monoclinic space group P2(1)/a, with a = 15.017(7) A, b = 11.938(6) A, c = 15.386(6) A, beta = 110.30(4)(o) and Z = 4. The molecular structures show that copper(II) ions in an asymmetrically elongated octahedral coordination (type 4 + 1 + 1) and in binuclear complex Cu(1) atom has a asymmetrically elongated octahedral coordination (type type 4 + 1 + 1) and Cu(2) atom exhibits a square base pyramidal coordination (type 4 + 1). The bridging ligand (imidazolate ion, im) lies nearly on a straight line between two Cu(2+), which are separated by 5.812 A, slightly shorter than the value in copper-copper superoxide dismutase (Cu(2)-Cu(2)SOD). Magnetic measurements and electron spin resonance (ESR) spectroscopy of the binuclear complex have shown an antiferromagnetic exchange interaction. From pH-dependent cyclic voltametry (CV) and electronic spectroscopic studies the complex has been found to be stable over a wide pH range (7.75-12.50).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号