首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Using combination of micromagnetic calculations and magnetic force microscopy (MFM) imaging we find optimal parameters for novel magnetic tips suitable for switching magnetization MFM. Switching magnetization MFM is based on two-pass scanning atomic force microscopy with reversed tip magnetization between the scans. Within the technique the sum of the scanned data with reversed tip magnetization depicts local atomic forces, while their difference maps the local magnetic forces. Here we propose the design and calculate the magnetic properties of tips suitable for this scanning probe technique. We find that for best performance the spin-polarized tips must exhibit low magnetic moment, low switching fields, and single-domain state at remanence. The switching field of such tips is calculated and optimum shape of the Permalloy elements for the tips is found. We show excellent correspondence between calculated and experimental results for Py elements.  相似文献   

3.
A new ferromagnetic hysteresis model for soft magnetic composite materials based on their specific properties is presented. The model relies on definition of new anhysteretic magnetization based on the Cauchy-Lorentz distribution describing the maximum energy state of magnetic moments in material. Specific properties of soft magnetic composite materials (SMC) such as the presence of the bonding material, different sizes and shapes of the Fe particles, level of homogeneity of the Fe particles at the end of the SMC product treatment, and achieved overall material density during compression, are incorporated in both the anhysteretic differential magnetization susceptibility and the irreversible differential magnetization susceptibility. Together they form the total differential magnetization susceptibility that defines the new ferromagnetic hysteresis model. Genetic algorithms are used to determine the optimal values of the proposed model parameters. The simulated results show good agreement with the measured results.  相似文献   

4.
Recent experiments [O.M. Auslaender et al., Nat. Phys. 5 (2009) 35] use a magnetic force microscope not only to image but also to move and deform an individual vortex line in a bulk YBCO type-II superconductor. The theory of this experiment is presented accounting for pinning and curving of the vortex and for the full three-dimensional anisotropy of pinning and of vortex line tension in this material.  相似文献   

5.
The reduced exchange coupling has been incorporated in our micromagnetic calculations for the hysteresis loops of Nd2Fe14B/α-Fe and Sm40Fe60/Ni80Fe20 multilayers. Analysis shows that nucleation and pinning fields are sensitive to the value of the interface coupling constant Ji when the soft layer thickness Ls is small. Hysteresis loops have been obtained for a trilayer system with a soft α-Fe sandwiched between two Nd2Fe14B layers for different values of Ls and Ji. As Ji decreases, nucleation field decreases while the pinning field increases. In the meantime, the squareness of the loops is deteriorated, which results in smaller energy product. For thick soft layer the coercivity mechanism transforms from pinning to nucleation as the interface coupling decreases, and vice versa. The above calculations have been extended to a Sm40Fe60/Ni80Fe20 bilayer and compared with available experimental data. The theoretical loop is consistent with the experimental one when the value of Ji is taken as 10% of the bulk one, demonstrating that the interface coupling in the experiment is far away from perfect coupling.  相似文献   

6.
In this paper we present a study of the separation of phases in multi-phase alloys. The proposed technique is based on the hyperbolic model of magnetization. By using this model it is possible to decompose the magnetic phases of alloys and determine their magnetic properties separately. Experimental verification was carried out on a transformer-like setup, constructed from layered samples representing the various magnetic phases. The samples were constructed from elements of strongly different magnetic properties. The results given by the model are in an excellent agreement with the experimental results, giving justification for the proposed method of decomposition. The proposed method is the first step towards the recognition and the separation of magnetic constituencies of different magnetic properties in an alloy by analytical means.  相似文献   

7.
Fast and efficient software tools previously developed in image processing were adapted to the analysis of raw datasets consisting of multiple stacks of images taken on a sample interacting with a measuring instrument and submitted to the effect of an external parameter. Magnetic force microscopy (MFM), a follow-up of atomic force microscopy (AFM), was selected as a first testbed example. In MFM, a specifically developed ferromagnetic scanning tip probes the stray magnetic field generated from a ferromagnetic specimen. Raw scanning probe images taken on soft patterned magnetic materials and continuous thin films were used, together with synthetic patterns exploited to assess the absolute performance ability of the proposed texture analysis tools. In this case, the parameter affecting the sample-instrument interaction is the applied magnetic field. The application discussed here is just one among the many possible, including, e.g., real-time microscopy images (both optical and electronic) taken during heat treatments, phase transformations and so on. Basically any image exhibiting a texture with a characteristic spatial or angular dependence could be processed by the proposed method. Standard imaging tools such as texture mapping and novel data representation schemes such as texture analysis, feature extraction and classification are discussed. A magnetic texture stability diagram will be presented as an original output of the entropic analysis on MFM datasets.  相似文献   

8.
Magnetic force microscopy (MFM) was used to investigate the magnetization reversal process in a patterned strip wire of permalloy thin film. The magnitude of the phase-shift of tapping mode MFM changed with the varying interactive magnetic force between the magnetic tip and the sample. By analyzing the change in values of the phase-shift, the behaviors of magnetization reversal of different local regions in a patterned strip wire can be quantitatively analyzed. The intensity of the phase-shift in the wider end is stronger than that in the narrower one. In contrast, due to a strong anisotropic effect, the coercive force in the narrower end (9 Oe) is larger than that in the wider one (8 Oe). Therefore, the Hc in the neck section could become strongly affected by the competition of the head-to-tail magnetic configurations in the two parts of the strip wire, and this results in a small Hc in the neck section. In addition, in a simple neck shape connection in a strip NiFe wire, a single domain configuration can be easily changed to a two single domain magnetic configuration.  相似文献   

9.
Ion bombardment induced magnetic patterning (IBMP) was used to write in-plane magnetized micro and submicron patterns in exchange biased magnetic bilayers, where the magnetization directions of the adjacent patterns are antiparallel to each other in remanence. These magnetic patterns were investigated by non-contact magnetic force microscopy (MFM). It is shown that the recorded MFM images of the IBMP patterns in two exemplarily chosen standard layer systems (NiFe (4.8 nm)/NiO (68 nm) and Co (4.8 nm)/NiO (68 nm)) can be well described by a model within the point-dipole approximation for the tip magnetization. For 5 and 0.9 μm wide bar patterns the domain wall widths between adjacent magnetically patterned areas were determined to a≈1 μm. The minimum magnetically stable pattern width was estimated to be 0.7 μm in the standard system Co (4.8 nm)/NiO (68 nm).  相似文献   

10.
研究了交流磁扰动对高温超导块材和永磁体之间悬浮力的影响。实验分析了在零场冷(ZFC)条件下,不同频率的交流磁场扰动下的悬浮力曲线;另外还研究了交流磁扰动在永磁体下降和上升过程中对悬浮力的影响,发现上升过程中悬浮力受交流磁场影响较大,而在下降过程中影响则较为不明显,同时随着交流磁场幅值的增大,悬浮力的滞回曲线逐渐加宽。说明交流磁场导致了超导块磁滞损耗的增加,对超导磁浮特性的研究具有理论意义。  相似文献   

11.
为实现超导重力仪磁悬浮力的精确计算,以GWR型超导重力仪为模型基础,采用有限元的思想,将超导球表面电流理想化为多个等高共轴电流环,计算出各个电流环与超导线圈的作用力,求和得到线圈与超导球间的磁悬浮力。利用MATLAB完成计算程序实现,通过改变下线圈电流和上、下线圈电流比,获得满足一定条件的磁悬浮力及其梯度。选取合适的模型参数,计算出线圈对质量为m=4.069 g超导球的磁悬浮力大小为:Ftotal=3.988×10^-2N,磁悬浮力梯度为:-9.699×10^-3N/m,此时悬浮力梯度合适,满足系统稳定性和灵敏度的要求。  相似文献   

12.
Atomic force (AFM) and magnetic force microscopy (MFM) were developed to detect biomolecular specific interaction. Goat anti-mouse immunoglobulin (anti-IgG) was covalently attached onto gold substrate modified by a self-assembly monolayer of thioctic acid via 1-ethyl-3-[3-(dimethylamino) propyl] carbodiimide (EDC) activation. Magnetic-labeled IgG then specifically adsorbed onto anti-IgG surface. The morphological variation was identified by AFM. MFM was proved to be a fine assistant tool to distinguish the immunorecognized nanocomposites from the impurities by detection of the magnetic signal from magnetic-labeled IgG. It would enhance the understanding of biomolecular recognition process.  相似文献   

13.
We report the measurement of reflected neutron intensity “hysteresis loops” from Co/Ru multilayers that have both antiferromagnetically and ferromagnetically coupled regions. We show that by measuring the four neutron spin-resolved reflectivities at a particular value of wavevector transfer, the normalised value of the relevant magnetic order parameter may be determined. The response of that order parameter to an applied magnetic field may hence be tracked. We have benchmarked our results against conventional magnetometry and magnetotransport measurements.  相似文献   

14.
A series of magnetic force microscopy tips with the synthetic structure consisting of two CoCrPt layers separated by a nonmagnetic Ru layer, which have the same magnetic layers but different thickness of the Ru layer, have been fabricated by sputtering. By analyzing the magnetic force microscopy images taken from the magnetic patterns recorded on longitudinal media, the performance of the tips was found to vary with the Ru thickness in an alternate fashion between enhanced and weakened responses. This phenomenon can be explained by the Ru thickness dependence of the exchange coupling between the two ferromagnetic layers and the corresponding frequency response of the trilayer tip. Synthetic tips with superior performances have been obtained after the Ru thickness was optimized.  相似文献   

15.
A compact high‐speed X‐ray atomic force microscope has been developed for in situ use in normal‐incidence X‐ray experiments on synchrotron beamlines, allowing for simultaneous characterization of samples in direct space with nanometric lateral resolution while employing nanofocused X‐ray beams. In the present work the instrument is used to observe radiation damage effects produced by an intense X‐ray nanobeam on a semiconducting organic thin film. The formation of micrometric holes induced by the beam occurring on a timescale of seconds is characterized.  相似文献   

16.
The magnetic resonance force microscope (MRFM) provides a route to achieving scanned probe magnetic resonance imaging with extremely high spatial resolution. Achieving this capability will require understanding the force exerted on a microscopic magnetic probe by a spatially extended sample over which the probe is scanned. Here we present a detailed analysis of this interaction between probe and sample. We focus on understanding the situation where the micromagnet mounted on the mechanical resonator generates a very inhomogeneous magnetic field and is scanned over a sample with at least one spatial dimension much larger than that of the micromagnet. This situation differs quite significantly from the conditions under which most MRFM experiments have been carried out where the sample is mounted on the mechanical resonator and placed in a rather weak magnetic field gradient. In addition to the concept of a sensitive slice (the spatial region where the magnetic resonance condition is met) it is valuable to map the forces exerted on the probe by spins at various locations; this leads to the concept of the force slice (the region in which spins exert force on the resonator). Results of this analysis, obtained both analytically and numerically, will be qualitatively compared with an initial experimental finding from an EPR-MRFM experiment carried out on DPPH at 4 K.  相似文献   

17.
Magnetic field induced first order antiferromagnetic (AFM) to ferrimagnetic (FRI) transition in polycrystalline Mn1.85Co0.15Sb has been studied using magnetic force microscopy (MFM) at 60 K and up to 8 T magnetic fields. Our MFM studies provide real space visualization of AFM to FRI transition. It shows growth (decay) of FRI phase with increasing (decreasing) magnetic field. The hysteretic behavior and co-existing FRI and AFM phases across the critical field required for FRI-AFM transition in Mn1.85Co0.15Sb are highlighted. This study demonstrates the potential of MFM for studying phase co-existence at high field and low temperatures.  相似文献   

18.
We introduce a dynamic force spectroscopy technique enabling the quantitative measurement of conservative and dissipative tip-sample forces in ambient conditions. In difference to the commonly detected force-vs-distance curves dynamic force microscopy allows to measure the full range of tip-sample forces without hysteresis effects caused by a jump-to-contact. The approach is based on the specific behavior of a self-driven cantilever (frequency-modulation technique). Experimental applications on different samples (Fischer-sample, silicon wafer) are presented.  相似文献   

19.
An atomic force microscope operated at various temperatures is introduced to evaluate phase transformation temperature and to observe microstructure for a shape memory alloy at same time in this paper. A commercial hot-rolled TiNi shape memory alloy bar is ground, polished and etched. The specimen is then observed by atomic force microscopy at the temperature range of 20–100 C in nitrogen gas. The topographies of a TiNi specimen show twinning martensite with rough surface and smooth austenite at various temperatures. The shape memory effect of the TiNi alloy is analyzed based on the shifts of the topographies obtained at various temperatures, which are used to evaluate the phase transformation temperature between martensite and austenite. The phase transformation temperature is also confirmed in a differential scanning calorimeter (DSC) experiment.  相似文献   

20.
An application of magnetic Compton scattering as a new tool to measure a spin‐specific magnetic hysteresis (SSMH) loop is introduced and its validity demonstrated. The applied magnetic field dependence of the integrated intensity of magnetic Compton scattering spectra, which reflect only the spin‐dependent magnetic properties of magnetically active electrons, was interpreted as the spin‐specific hysteresis. The spin magnetization of amorphous Tb33Co67 film was observed and its SSMH loop exhibited qualitative agreement with the ordinal magnetic hysteresis loop measured using a conventional vibrating sample magnetometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号