首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Synchrotron surface X-ray diffraction has been used to investigate in situ the morphology and epitaxy of monolayer amounts of copper electrodeposited from aqueous electrolyte onto ultra-high vacuum prepared, smooth, Ga- or As-terminated GaAs(0 0 1) surfaces. The fcc lattice of the epitaxial Cu islands is rotated by 5° and tilted by about 9° with respect to the GaAs substrate lattice, leading to eight symmetry equivalent domains of Cu islands terminated by {1 1 1} facets.  相似文献   

2.
X-ray photoelectron spectroscopy was used to study the effect of atomic oxygen on Ru(0 0 0 1), and the effect of dissociated ammonia on RuO2/Ru(0 0 0 1), in UHV conditions at ambient temperature. The Ru(0 0 0 1) surface was exposed, at ambient temperature, to a mixed flux of atomic and molecular oxygen generated by dissociation of O2 in a thermal catalytic cracker, with 45% dissociation efficiency. The detailed study of the XPS spectra shows the formation of a disordered multilayer oxide (RuO2). No formation of higher oxides of Ru was observed. The formation of RuO2 proceeded without saturation for total oxygen exposures of up to 105 Langmuir, at which point an average oxide thickness of 68 Å was observed. RuO2 formed by the reaction with atomic oxygen was exposed to a flux of NHx (x = 1, 2) + H generated by the cracker. The reduction of RuO2 to Ru metal was observed by XPS. An exposure of 3.6 × 102 L of NHx + H, resulted in the observation of adsorbed H2O and OH, but no evidence of lattice oxide. The chemisorbed species were removed by additional NHx + H exposure. No nitrogen adsorption was observed.  相似文献   

3.
Amorphous, nanocrystalline, and bulk AlO(OH) · xH2O crystals have six fundamental modes (FM) of vibration in a nonlinear AlO(OH) molecular structure. Most of them appear in groups of four IR and Raman bands. Their positions and relative intensities differ significantly in three specimens. The nanocrystals (monoclinic structure with z=8 molecules per unit cell) have four OH stretching bands at values enhanced by up to 360 cm−1 at 3120, 3450, 3560 cm−1 in comparison to those in bulk crystals or amorphous specimens. The first two bands are broad, bandwidth Δν1/2200 to 350 cm−1, while the other two are sharp, Δν1/290 cm−1. The sharp bands shift to 3525 and 3595 cm−1 after heating the sample at 100°C. They no longer appear after heating at 300 or 500°C for 2 h (the specimen decomposes to Al2O3), leaving behind only two bands at 3100 and 3400 cm−1. A Δν1/2 value of 500 cm−1 appears in the 3400 cm−1 in a delocalized distribution of H atoms. Two bands also occur at 3098 and 3300 cm−1 in bulk crystals (orthorhombic structure with z=4) or at 2990 and 3515 cm−1 in an amorphous sample. More than one bands appear in a FM vibration in occurrence of sample in more than one conformers. The amorphous sample has approximately the same conformer structure as the bulk crystals. An amorphous surface structure exists in nanocrystals with a group of three bands at 1420, 1510 and 1635 cm−1 in an interconnected network structure. It encapsulates the nanocrystals in an amorphous shell. Its volume fraction, 33% estimated from the integrated intensity in three bands, determines 2.2 nm thickness in the shell in spherical shape of nanocrystals in 35 nm diameter.  相似文献   

4.
We investigated the growth of thin NaCl films on Ag(1 0 0) by spot-profile-analysis low energy electron diffraction (SPA-LEED), varying extensively the growth temperature (200–500 K) and the film thickness (0.5–14 ML). The incommensurate growth of NaCl on Ag(1 0 0) yields (1 0 0)-terminated epitaxial NaCl domains, which are preferentially oriented with their [0 1 0] axis parallel to that of the substrate. At 300 K, the NaCl domains exhibit an azimuthal mosaicity by 14° around this orientation and the NaCl unit cell is laterally contracted in the first layers by 0.9% with respect to the bulk. At higher growth temperatures, the azimuthal mosaic distribution sharpens and additional distinct orientations appear, presumably due to a higher-order commensurability. The evolution of the azimuthal mosaic distribution with increasing temperature can be ascribed to both the NaCl thermal expansion and higher diffusion rates of NaCl on Ag(1 0 0). The best epitaxy, i.e. that with the highest selectivity of a specific azimuthal domain orientation, is achieved by growing NaCl films at low deposition rate (0.1 ML min−1) on the Ag(1 0 0) substrate at constant high temperature (450–500 K). The observations made here can probably be applied more generally to other heterogeneous interfaces and, in particular, be used to improve the quality of thin insulating films.  相似文献   

5.
The microstructures and the microwave dielectric properties of the (1 − x)(Mg0.95Co0.05)TiO3x(Na0.5La0.5)TiO3 ceramic system were investigated. Two-phase system was confirmed by the XRD patterns and the EDX analysis. A co-existed second phase (Mg0.95Co0.05)Ti2O5 was also detected. The microwave dielectric properties are strongly related to the density and the matrix of the specimen. A new microwave dielectric material 0.88(Mg0.95Co0.05)TiO3–0.12(Na0.5La0.5)TiO3, possessing an excellent combination of dielectric properties: εr  22.36, Q × f  110,000 GHz (at 9 GHz), τf  2.9 ppm/°C), is proposed as a candidate dielectric for GPS patch antennas.  相似文献   

6.
m-plane ZnO film was epitaxially deposited on (1 0 0) γ-LiAlO2 by metal-organic chemical vapor deposition at 600 °C with a GaN buffer layer. The epitaxial relationships between ZnO and GaN, GaN and (1 0 0) γ-LiAlO2 were determined by X-ray diffraction Φ-scans. There exhibits very small decrease for the E2 mode shift (0.3 cm−1) of ZnO in the Raman spectrum, which indicates the epitaxial ZnO film was under a slight tensile stress (5.77 × 107 Pa). Unlike the highly strained a-plane ZnO, temperature dependent photoluminescence spectra show that the free A exiton emission was observed with the temperature ≤138 K.  相似文献   

7.
S. Hrtel  J. Vogt  H. Weiss 《Surface science》2008,602(17):2943-2948
The structure and lattice dynamics of RbBr(1 0 0) and RbI(1 0 0) single crystal surfaces cleaved under UHV conditions were investigated by means of low energy electron diffraction (LEED) at temperatures of 156 K and 183 K, respectively. Since RbBr and RbI are insulators the experiments were carried out with a microchannel plate LEED system at very low primary currents (5 nA). For both materials four different diffraction orders could be observed. Diffraction patterns were recorded over an energy range from 30 eV to 220 eV in increments of 2 eV and I(V) curves for each spot were extracted. The I(V) curves were analyzed using the tensor LEED approach. For both alkali halide substrates surface structures of (1 × 1) periodicity close to the truncated bulk structure were found. For RbBr, the first interlayer distance is reduced by about 2.2%, where the Rb+ cations in the topmost layer are shifted inwards by 0.06(3) Å, and the anions also exhibit an inward shift which is however smaller (0.04(3) Å). The root mean square vibrational amplitudes are enlarged by a factor of 1.3 for Rb+ and 1.25 for Br, respectively. For RbI(1 0 0) the cations of the topmost layer are shifted inwards by 0.07(3) Å and the anions outwards by 0.02(1) Å. The vibrational amplitudes of the ions are not enlarged as for RbBr but close to the corresponding bulk values.  相似文献   

8.
The initial nucleation of Au onto the R45° reconstructed Fe3O4(0 0 1) surface has been studied using scanning tunnelling microscopy. Au clusters are formed, with a typical lateral dimension of 0.9 nm. The measured corrugation height of the clusters, 0.1 nm, suggests that they are a single atomic layer in height. The clusters nucleate on a specific surface site, which lies at the centre of a R45° reconstructed unit cell. The size and spatial distribution of the Au clusters formed is shown to strongly correlate to the symmetry and periodicity of the reconstructed magnetite surface. It is also shown that even when the clusters are in close proximity they still only occupy this single nucleation site, and thus maintain the periodicity of the substrate. We relate the order and stability of this system to the fact that magnetite (0 0 1) is polar, and suggest that such surfaces offer ideal templates for self-assembly due to the stability of their polarity induced reconstructions.  相似文献   

9.
Highly transparent and conductive scandium doped zinc oxide (ZnO:Sc) films were deposited on c-plane sapphire substrates by sol–gel technique using zinc acetate dihydrate [Zn(CH3COO)2·2H2O] as precursor, 2-methoxyethanol as solvent and monoethanolamine as a stabilizer. The doping with scandium is achieved by adding 0.5 wt% of scandium nitrate hexahydrate [(ScNO3·6H2O)] in the solution. The influence of annealing temperature (300–550 °C) on the structural, optical and electrical properties was investigated. X-ray Diffraction study revealed that highly c-axis oriented films with full-width half maximum of 0.16° are obtained at an annealing temperature of 400 °C. The surface morphology of the films was judged by SEM and AFM images which indicated formation of grains. The average transmittance was found to be above 92% in the visible region. ZnO:Sc film, annealed at 400 °C exhibited minimum resistivity of 1.91 × 10−4 Ω cm. Room-temperature photoluminescence measurements of the ZnO:Sc films annealed at 400 °C showed ultraviolet peak at 3.31eV with a FWHM of 11.2 meV, which are comparable to those found in high-quality ZnO films. Reflection high-energy electron diffraction pattern confirmed the epitaxial nature of the films even without introducing any buffer layer.  相似文献   

10.
Uncooled pyroelectric infrared detectors based on ferroelectric single crystals 0.74Pb(Mg1/3Nb2/3)O3–0.26PbTiO3 (PMN–0.26PT) were fabricated. The performances of pyroelectric detectors dependence on detector fabrication temperature, absorption layer, and element thickness were compared. The room-temperature voltage responsivity (Rv) of 200 V/W and specific detectivity (D*) of 108 cm Hz1/2/W at 12.5 Hz have been achieved. The results reveal that the better pyroelectric response can be expected by controlling temperature below 70 °C during the fabrication of the pyroelectric detectors, selecting absorption layer with high absorption coefficient, and decreasing the thickness of the elements.  相似文献   

11.
Ba2(In1 − xMx)2O5 − y / 2(OH)y‪□1 − y / 2 (y ≤ 2; M = Sc3+ 0 ≤ x < 0.5 and M = Y3+ 0 ≤ x < 0.35) compounds were prepared by reacting Ba2(In1 − xMx)2O5‪ phases with water vapor. This reaction is reversible. Analyses of the hydration process by TG and XRD studies show that the thermal stability of hydrated phases increases when x increases and that the incorporation of water is not a single-phase reaction inducing either a crystal system or space group modification. Fully hydrated (y = 2) and dehydrated (y = 0) samples have been stabilized at room temperature and characterized for all compositions. In wet air, all phases show a proton contribution to the total conductivity at temperatures between 350 and 600 °C. At a given temperature, proton conductivity increases with the substitution ratio and reaches at 350 °C, 5.4 10− 3 S cm− 1 for Ba2(In0.65Sc0.35)2O4.20.2(OH)1.6.  相似文献   

12.
The so-called Biphase termination on α-Fe2O3 has been widely accepted to be a structure with a 40 Å unit supercell composed of coexisting islands of Fe1−xO and α-Fe2O3. Based on thermodynamic arguments and experimental evidence, including transmission electron diffraction, imaging, magnetic and spectroscopic information, it is found that the previously proposed structure model is inaccurate. The actual Biphase structure is instead a layered structure related to the reduction of α-Fe2O3 to Fe3O4. A model for the Biphase termination is proposed which does not contain islands of Fe1−xO but instead consists of bulk α-Fe2O3 and a Fe3O4-derived overlayer. The proposed model is consistent with all current and previously reported experimental findings.  相似文献   

13.
The high resolution absorption spectrum of monodeuterated water, HDO, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) in the 13,020–14,115 cm−1 region dominated by the 4ν3 band. The achieved noise equivalent absorption (αmin10−9 cm−1) allowed detecting transitions with line strengths as small as 2×10−27 cm/molecule which is about 10 times lower than the smallest line intensities previously detected in the region.The rovibrational assignment of the spectrum was based on the results of the variational calculations of Schwenke and Partridge (SP) as well as recent calculations using a new potential energy surface performed by Voronin, Tolchenov and Tennyson (VTT). 2157 transitions involving 21 upper vibrational states were assigned to HD16O while only four bands were previously reported in the region. A set of 157 new energy levels could be derived. It includes rotational levels of several highly excited bending states, in particular the (0 11 0) pure bending state. For some states like the (1 0 3) and (0 2 3) Fermi dyad, effective Hamiltonian modelling was needed to establish the vibrational assignments of some rotational levels. VTT calculations were found to significantly improve the SP results, the rms deviation of the calculated and observed energies being decreased from 0.23 to 0.06 cm−1.Finally, 79 transitions of the 4ν3 band of the HD18O isotopologue were assigned, leading to the derivation of 48 levels, which are the most excited energy levels reported so far for this isotopologue.  相似文献   

14.
S. Sato  Y. Narita  A.R. Khan  A. Namiki 《Surface science》2009,603(16):2607-2611
We study the dynamics of D abstraction by 0.05 eV H atoms on a Si(1 0 0) surface. Time-of-flight (TOF) distributions of the abstracted HD molecules are measured using a quasi-random chopper/cross-correlation method. The measured TOF distribution is found to be broad and fast. The distribution is decomposed into two components being related to direct abstraction (ABS) and adsorption-induced-desorption (AID), which were revealed in the kinetics studies. The best curve fits yield mean kinetic energies of 1.15 ± 0.20 eV and 0.33 ± 0.05 eV for the ABS and AID components, respectively. Dynamics and kinetics of hydrogen abstraction at Si(1 0 0) surfaces are consistently understood.  相似文献   

15.
Scanning tunneling microscopy (STM) experiments reveal that Co growth on Ag(1 1 0), at coverages of Co < 1 ML and low substrate temperatures (150 K), involves a concomitant insertion of Co into the top Ag layer and exchange of Ag out onto the surface. At 300 K, coverages of Co > 1 ML gives rise to a 3D nanocluster growth on the surface, with the clusters covered by Ag. Depending slightly on coverage, the clusters have a typical diameter of 3 nm and a height of 0.4 nm. Upon annealing to 500 K, major changes are observed in the morphology of the surface. STM and AES show that there is a reduction of the number of Co islands on the surface, partly due to subsurface Co cluster migration and partly due to sintering into larger clusters.  相似文献   

16.
Passively Q-switched output of a flashlamp-pumped 1.319 μm Nd:YAG laser is realized by using Co2+:LaMgAl11O19 (Co:LMA) as saturable absorber. When initial transmission of the saturable absorber T0 is 78%, a Q-switched output pulse with pulse width (FWHM) 44.8 ns and pulse energy 17.4 mJ is obtained, corresponding to 19.3% of the free-running energy under the equal pumping energy of 45.4 J. The experimental results show that the higher T0 will result in a lower pumping threshold of the laser, but lower T0 can make the laser generate pulses with higher single-pulse energy, narrower pulse width, and accordingly higher peak power.  相似文献   

17.
This study explores the nucleation and morphological evolution of silicon nanowires (Si-NWs) on Si (0 0 1) and (1 1 1) substrates synthesized using nanoscale Au–Si island-catalyzed rapid thermal chemical vapor deposition. The Au–Si islands are formed by Au thin film (1.2–3.0 nm) deposition at room temperature followed by annealing at 700 °C, which are employed as a liquid-droplet catalysis during the growth of the Si-NWs. The Si-NWs are grown by exposing the substrates with Au–Si islands to a mixture of gasses SiH4 and H2. The growth temperatures and the pressures are 500–600 °C and 0.1–1.0 Torr, respectively. We found a critical thickness of the Au film for Si-NWs nucleation at a given growth condition. Also, we observed that the dimensional evolution of the NWs significantly depends on the growth pressure and temperature. The resulting NWs are 30–100 nm in diameter and 0.4–12.0 μm in length. For Si (0 0 1) substrates 80% of the NWs are aligned along the 1 1 1 direction which are 30° and 60° with respect to the substrate surface while for Si (1 1 1) most of the NWs are aligned vertically along the 1 1 1 direction. In particular, we observed that there appears to be two types of NWs; one with a straight and another with a tapered shape. The morphological and dimensional evolution of the Si-NWs is significantly related to atomic diffusion kinetics and energetics in the vapor–liquid–solid processes.  相似文献   

18.
The adsorption and reaction of methyl lactate (CH3CH(OH)COOCH3) is studied in ultrahigh vacuum on a Pd(1 1 1) surface using temperature-programmed desorption (TPD) and reflection–absorption infrared spectroscopy (RAIRS). Methyl lactate reacts at relatively low temperatures (220 K) by O–H bond scission. This intermediate can either react with hydrogen to reform methyl lactate at 280–300 K or undergo β-hydride elimination to form flat-lying methyl pyruvate. This decomposes to form acetyl and methoxy carbonyl species as found previously following methyl pyruvate adsorption on Pd(1 1 1). These species predominantly react to form carbon monoxide, methane and hydrogen.  相似文献   

19.
A 120 TW/36 fs laser system based on Ti:sapphire chirped-pulse amplification (CPA) has been successfully established in our lab. The final four pass Ti:sapphire amplifier pumped by an energetic single-shot Nd:YAG—Nd:glass laser was designed and optimized. With 24 J/8 ns pump energy at 532 nm, 300 mJ/220 ps chirped pulse was amplified to 5.98 J in this amplifier, and a total saturated gain of 20 was achieved. The focused intensity of compressed beam could reach to 1020 W/cm2 with the M2 of 2.0.  相似文献   

20.
We present a theoretical study of the collisions of atomic oxygen with O-precovered β-cristobalite (1 0 0) surface. We have constructed a multidimensional potential energy surface for the O2/β-cristobalite (1 0 0) system based mainly on a dense grid of density functional theory points by using the interpolation corrugation-reducing procedure. Classical trajectories have been computed for quasithermal (100–1500 K) and state-specific (e.g., collision energies between 0.01 and 4 eV) conditions of reactants for different O incident angles (θv). Atomic sticking and O2(adsorbed) formation are the main processes, although atomic reflection and Eley–Rideal (ER) reaction (i.e., O2 gas) are also significant, depending their reaction probabilities on the O incident angle. ER reaction is enhanced by temperature increase, with an activation energy derived from the atomic recombination coefficient (γO(θv = 0°, T)) equal to 0.24 ± 0.02 eV within the 500–1500 K range, in close agreement with experimental data. Calculated γO(θv = 0°, T) values compare quite well with available experimental γO(T) although a more accurate calculation is proposed. Chemical energy accommodation coefficient βO(T) is also discussed as a function of ER and other competitive contributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号