首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Li L  Hu B  Xia L  Jiang Z 《Talanta》2006,70(2):468-473
A method based on single-drop microextraction (SDME) combined with electrothermal vaporization (ETV)-ICP-MS was proposed for the determination of trace Cd and Pb. 8-Hydroxyquinoline (8-HQ) was employed as extractant dissolved in several microliters of chloroform and then an organic microdrop was formed at the tip of the microsyringe needle to extract the interest analytes. The vaporization behavior of the metal-8-HQ chelates in graphite furnace was investigated, and the ETV temperature program was optimized. The factors that influenced the extraction efficiency of target analytes (including pH value, flow rate of sample, extraction time and organic microdrop volume) were studied. Under the optimum conditions, the detection limits of the Cd and Pb were 4.6 and 2.9 pg mL−1 with the enrichment factor of 140-fold for Cd and 190-fold for Pb, respectively. The proposed method was applied successfully to the determination of trace Cd and Pb in environmental and biological samples. In order to validate the developed method, a certified reference material of GBW 08501 peach leaves was analyzed and the determined values obtained were in a good agreement with the certified values.  相似文献   

2.
The current study describes a simple and fast method for the determination of Ba, Cd, Co, Cr, Cu, Mn, Ni and Pb in tobacco samples. Commercial cigarettes obtained from local market stores were analysed by inductively coupled plasma mass spectrometry (ICP-MS) after ultrasound-assisted extraction in acidic medium, and the results were compared to those obtained following microwave-assisted digestion of the samples. The sonication time was evaluated from 0 to 60 min, and a 30 min extraction time was selected. The concentration of HNO3 was also optimised at 0.7 mol L?1. In order to verify the accuracy of the proposed method, a certified reference material was submitted to the same extraction protocol adopted for the samples, and good agreement with the certified values was obtained at a 95% confidence level, except for Co. The extraction of Pb was also semi-quantitative. A total of four tobacco samples were analysed, with concentrations ranging from 0.4 for Cr to 214.6 µg g?1 for Mn. The proposed method was demonstrated to be fast, sensitive, precise and accurate for the determination of Ba, Cd, Cr, Cu, Mn an Ni and for the semi-quantitative analysis of Co and Pb in tobacco samples.  相似文献   

3.
A simplified and fast sample pretreatment method based on ultrasound-assisted solubilization of metals from plant tissue with ethylenediaminetetraacetic acid in alkaline medium is described. Powdered unknown and certified plant samples (particle size < 50 μm) were slurried in the solubilization medium and subjected to high intensity ultrasonication by a probe ultrasonic processor (20 kHz, 100 W). Metal solubilization can be accomplished within 3 min using a 30% vibrational amplitude and 0.1 M EDTA at pH 10, the supernatant obtained upon centrifugation being used for analysis. The method is applied to several food plants with unknown metal contents and certified plant samples such as CRM GBW07605 tea leaves, BCR CRM 61 aquatic moss and BCR CRM 482 lichen, with good trueness and precision. Intensive treatments with concentrated acids involving total matrix decomposition can be avoided. Metal determination (Ca, Cd, Mg, Mn, Pb and Zn) in the alkaline extracts was carried out by flame and electrothermal atomic absorption spectrometry.  相似文献   

4.
A simplified and fast sample pretreatment method based on ultrasound-assisted solubilization of metals from plant tissue with ethylenediaminetetraacetic acid in alkaline medium is described. Powdered unknown and certified plant samples (particle size < 50 microns) were slurried in the solubilization medium and subjected to high intensity ultrasonication by a probe ultrasonic processor (20 kHz, 100 W). Metal solubilization can be accomplished within 3 min using a 30% vibrational amplitude and 0.1 M EDTA at pH 10, the supernatant obtained upon centrifugation being used for analysis. The method is applied to several food plants with unknown metal contents and certified plant samples such as CRM GBW07605 tea leaves, BCR CRM 61 aquatic moss and BCR CRM 482 lichen, with good trueness and precision. Intensive treatments with concentrated acids involving total matrix decomposition can be avoided. Metal determination (Ca, Cd, Mg, Mn, Pb and Zn) in the alkaline extracts was carried out by flame and electrothermal atomic absorption spectrometry.  相似文献   

5.
Application of microwave assisted extraction for the decomposition and dissolution of plant samples for trace metal determination by ICP-AES was examined. Dried onion, leaves of spinach beet and three reference materials CTA-OTL-1, CTA-VTL-2 and CL-1 were analyzed. Water, EDTA and hydrochloric acid (0.01, 0.10 and 1.0 M, respectively) were used as leaching solutions. The extraction efficiency was investigated by comparison of the results with those obtained after microwave wet digestion. HCl was found to be very suitable for quantitative extraction of B, Ba, Cd, Cu, Mn, Ni, Pb, Sr and Zn from the samples. For reference materials, the measured concentrations are well consistent with the certified values. The use of EDTA led to a complete extraction of B, Cd, Ni, Pb, Sr and Zn. Water was found to be a good leaching solution for boron. For extraction with HCl and EDTA, the RSD values for the concentrations measured were below 8% for most of the elements.  相似文献   

6.
Hongmei Jiang  Bin Hu 《Mikrochimica acta》2008,161(1-2):101-107
A new method of direct single-drop microextraction combined with electrothermal atomic absorption spectrometry (ETAAS) is presented for the determination of trace Cd and Pb with dithizone (H2DZ) as chelating reagent. Factors influencing the microextraction efficiency and determination, such as pH, microdrop volume, stirring rate, extraction time were evaluated. Under the optimized experimental conditions, the detection limits of the method are 2 and 90 pg mL−1 for Cd and Pb, and the relative standards deviations for 0.5 ng mL−1 Cd and 10 ng mL−1 Pb are 11 and 12.8%. After 10 min of extraction, the enrichment factors for Cd and Pb are 118 and 90, respectively. The results for the determination of Cd and Pb in tap water, spring water, river water, pond water, lake water and spiked water samples demonstrate the accuracy, recovery and applicability of the method. An environmental water certified reference material (GSBZ 50009-88) was analyzed, and the determined values are in a good agreement with the certified values. Correspondence: Bin Hu, Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China  相似文献   

7.
Application of microwave assisted extraction for the decomposition and dissolution of plant samples for trace metal determination by ICP-AES was examined. Dried onion, leaves of spinach beet and three reference materials CTA-OTL-1, CTA-VTL-2 and CL-1 were analyzed. Water, EDTA and hydrochloric acid (0.01, 0.10 and 1.0 M, respectively) were used as leaching solutions. The extraction efficiency was investigated by comparison of the results with those obtained after microwave wet digestion. HCl was found to be very suitable for quantitative extraction of B, Ba, Cd, Cu, Mn, Ni, Pb, Sr and Zn from the samples. For reference materials, the measured concentrations are well consistent with the certified values. The use of EDTA led to a complete extraction of B, Cd, Ni, Pb, Sr and Zn. Water was found to be a good leaching solution for boron. For extraction with HCl and EDTA, the RSD values for the concentrations measured were below 8% for most of the elements. Received: 4 May 2000 / Revised: 20 June 2000 / Accepted: 22 June 2000  相似文献   

8.
A new procedure for the preconcentration of trace amounts of free Pb and Cd by disposable pipette extraction (DPX) is proposed herein. Recycled cork is used as a biosorbent and the procedure is completely free of organic solvents. The cork was reduced to a powder and characterized by scanning electron microscopy. Several parameters that influence the preconcentration of Pb and Cd with DPX-cork, such as the sample pH, number of extraction cycles, biosorbent mass, and percentage of acid in the desorption step, were studied. The tolerance of DPX-cork with respect to 10 potential interfering ions was also evaluated. Coupled with the high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) technique, the sample preparation method allowed the analytical limits required for quality control (according to the permitted limits established by legislation) to be obtained. The limits of detection for the extraction of a 3.5-mL water sample were 200?ng L?1 for Pb and 100?ng L?1 for Cd. The relative standard deviations were around 7.5% for Pb and 8.0% for Cd. The optimized method was successfully applied to the determination of Cd and Pb in two certified reference materials (water and wastewater) and five water samples (collected from a mangrove, a creek, and the sea).  相似文献   

9.
Simple and rapid analytical procedures for the ETAAS determination of Cd and Pb in plant (poplar, clover, plantain) leaves are described. Optimal conditions are presented for the wet digestion of plant matrices with a mixture of nitric acid and hydrogen peroxide along with optimal temperature programmes for subsequent modifier-free electrothermal determination of Cd and Pb. Slurry preparation procedures using tetramethylammonium hydroxide or a mixture of 1 mol/L HNO3 + 1.5 mol/L H2O2 are proposed as another approach for rapid and accurate routine analysis of Cd and Pb in plant leaves. It has been found that single standard addition can be used for quantitative determination in the case of wet digestion ETAAS and standard addition to each analysed matrix is recommended in the case of slurry ETAAS. For all plant leaves investigated good agreement was achieved between the concentrations determined by wet digestion ETAAS and slurry ETAAS. The wet digestion method provides relative standard deviations for Cd ranging from 3% to 17% and for Pb from 2% to 16%. For the slurry method the RSD values are in the range of 4–31% for Cd and 4–30% for Pb, depending for both cases on the magnitude of the measured concentrations. Validity and versatility of the methods are verified by the analyses of standard reference materials. Received: 17 March 1997 / Revised: 2 May 1997 / Accepted: 8 May 1997  相似文献   

10.
The application of sulfur-nanoparticle-loaded alumina as an efficient adsorbent for the solid-phase extraction (SPE) and determination of trace amounts of Cd, Cu, Zn, and Pb ions was investigated in marine samples using flame atomic absorption spectrometry (FAAS). The nanometer-sized sulfur particles were synthesized in situ, physically loaded onto alumina microparticles, and the parameters influencing the preconcentration of the analytes, such as the pH, solution flow rate and volume, eluent solution, and interfering ions, were examined. The results showed that the optimal conditions for quantitative recovery of the metal ions by adsorption and elution on the sulfur nanoparticles (SNPs) was achieved by employing a flow rate of 15 mL min(-1), a pH of 8.5 for the sample solutions, and an eluent composed of 3.0 mol L(-1) HNO(3) in methanol. The detection limits of this method for Cd, Zn, Cu, and Pb ions were 0.30, 0.21, 0.24, and 0.63 μg L(-1) (n=10), respectively. Application of the proposed method to the analysis of fish certified reference material (DORM-3) produced results that were in good agreement with the certified values. The proposed method was also successfully applied to the determination of analytes in marine samples, including seawater, fish, and oysters.  相似文献   

11.
A simple and rapid method is described for the quantitative extraction and determination of Cd and Pb in mussel tissue (Mytilus edulis). The method is based on the quantitative ultrasound-assisted extraction (i.e. sample mass at mg level) of the two metals using diluted nitric acid as extractant. The extraction procedure is carried out in autosampler cups of the graphite furnace (typically, less than 20 mg). A two-level full factorial design (24) was applied to optimize the variables influencing the ultrasound extraction process. These variables were: extraction time, ultrasound amplitude, nitric acid concentration and particle size. Optimization results showed that acid concentration and particle size were the more significant variables. Determination of Cd and Pb in extracts obtained after ultrasound treatment was carried out by Electrothermal Atomic Absorption Spectrometry. The method was validated by statistically comparing the metal contents found with the certified ones corresponding to the BCR 278 mussel tissue. No significant differences were observed for P = 0.05. LODs for Cd and Pb in mussel tissue were 0.019 and 0.37 μg g–1. RSDs values (corresponding to between-batch precision for n = 5) were 2.2 and 6.7% for Cd and Pb, respectively. The method was applied to measure the contents of Cd and Pb in mussels used as pollution bioindicators from the Galician coast (Ria de Vigo, Spain).  相似文献   

12.
A solid-phase extraction procedure for Pb(II) and Cd(II) as 2,9 dimethyl-4,7-diphenyl-1,10-phenanthroline complexes on activated carbon cloth (ACC) has been established. In the determination step, flame atomic absorption spectrometry (FAAS) was used. The optimum conditions for pH, type and volume of eluent, volume of sample solution, flow rates of eluent, sample solution and matrix effect were determined. For quantitative recovery of the analyte ions, refereed optimum values are as follows: amount of ACC, 0.4 g; pH, 6.0 and eluent, 10 mL 3 M HNO3. To test the accuracy of the method, a certified reference material (CRM) analysis and add-recovery methods were performed. The developed method was applied for the determination of the analyte elements in water and vegetable samples.  相似文献   

13.
Acidified subcritical water is proposed for the continuous extraction of metals (namely, lead, copper, cadmium, arsenic, selenium and mercury) from soils prior to: (a) continuous derivatisation (by hydride formation for As and Se, and cold vapour formation for Hg) and determination by atomic fluorescence; and (b) determination by Graphite Furnace-Atomic Absorption Spectrometry for Pb, Cu and Cd. Soil samples (5 g) were subjected to 90-min dynamic extraction with water modified with 4% (v/v) HNO(3) at 200 degrees C and 30 bar. A univariate optimisation of the variables related to derivatisation (for As, Se and Hg) and detection (for all of them), and a multifactorial optimisation of the variables affecting the continuous extraction step were performed. A kinetics study of the extraction process was performed in order to control the lowering of metals in the soil. The method was compared with the EPA-3051 reference method. The good reproducibility of the method, together with its safety and low cost, make it a good alternative for the demetalisation of contaminated soil.  相似文献   

14.
A new method of hollow-fiber liquid-phase microextraction (HF-LPME) prior to electrothermal vaporization (ETV) inductively coupled plasma mass spectrometry (ICP-MS) determination of trace Cu, Zn, Pd, Cd, Hg, Pb and Bi, based on gaseous compounds introduction into the plasma as their diethyldithiocarbmate (DDTC) chelates, was developed. The use of the reagent DDTC as chemical modifier could not only enhance the analytical signals, but also decrease the vaporization temperature. At a temperature of 1300 degrees C, trace Cu, Zn, Pd, Cd, Hg, Pb and Bi can be vaporized completely into the ICP. The factors affecting the formation of the chelates and their vaporization behaviors were investigated in detail, and the microextraction conditions were optimized. Under the optimized conditions, the detection limits of the proposed method were 12.4, 28.7, 7.9, 4.5, 3.3, 4.8 and 1.6 pg ml(-1) for Cu, Zn, Pd, Cd, Hg, Pb and Bi, respectively. Enrichment factors of 305, 284, 24, 29, 20, 73 and 43 could be achieved within 15 min of extraction time, and the relative standard deviations (RSDs) for the seven determinations of 0.5 ng ml(-1) of target analytes were 8.8, 6.9, 7.1, 9.4, 10.2, 6.1 and 10.8%, respectively. The newly developed method has been applied to the determination of trace Cu, Zn, Pd, Cd, Hg, Pb and Bi in environmental water and human serum samples, and the recoveries for the spiked samples were in the range of 88-116%. In order to validate this method, two certified reference materials, GBW08501 peach leaves and GBW(E)080040 seawater, were analyzed, and the determined values were in good agreement with the certified values.  相似文献   

15.
A method for the simultaneous determination of aluminum (Al), cadmium (Cd) and lead (Pb) in whole blood has been developed by using simultaneous atomic absorption spectrometry (SIMAAS) with oxygen charring. The optimized conditions for the simultaneous determination of Al, Cd and Pb were obtained in the presence of palladium (Pd) as the chemical modifier, using 600 °C and 2400 °C as the pyrolysis and the atomization temperature, respectively. The whole blood samples were diluted 1+5 (v/v) directly with 0.1% (v/v) Triton X‐100. Oxygen was employed to eliminate the interference of carbonaceous residues in the charring step before pyrolysis. The calibration curves were carried out with aqueous standard solutions and the linear ranges were 0–40 ng mL−1, 0–4 ng mL−1 and 0–40 ng mL−1 for Al, Cd and Pb, respectively. The detection limits were 0.96 ng mL−1 (19.2 pg) for Al, 0.03 ng mL−1 (0.6 pg) for Cd and 0.60 ng mL−1 (12.0 pg) for Pb. The spiked recoveries of Al, Cd and Pb in whole blood were 98.0%, 100.0% and 101.7%, respectively. The accuracy of the proposed method was evaluated with the analysis of a whole blood certified reference material (Seronorm, level 2). The found concentrations were in agreement with the recommended values. The proposed method has been successfully applied to the simultaneous determination of Al, Cd and Pb in whole blood of healthy volunteers before and after eating barbecued foods.  相似文献   

16.
A simple and rapid method is described for the quantitative extraction and determination of Cd and Pb in mussel tissue (Mytilus edulis). The method is based on the quantitative ultrasound-assisted extraction (i.e. sample mass at mg level) of the two metals using diluted nitric acid as extractant. The extraction procedure is carried out in autosampler cups of the graphite furnace (typically, less than 20 mg). A two-level full factorial design (24) was applied to optimize the variables influencing the ultrasound extraction process. These variables were: extraction time, ultrasound amplitude, nitric acid concentration and particle size. Optimization results showed that acid concentration and particle size were the more significant variables. Determination of Cd and Pb in extracts obtained after ultrasound treatment was carried out by Electrothermal Atomic Absorption Spectrometry. The method was validated by statistically comparing the metal contents found with the certified ones corresponding to the BCR 278 mussel tissue. No significant differences were observed for P = 0.05. LODs for Cd and Pb in mussel tissue were 0.019 and 0.37 μg g–1. RSDs values (corresponding to between-batch precision for n = 5) were 2.2 and 6.7% for Cd and Pb, respectively. The method was applied to measure the contents of Cd and Pb in mussels used as pollution bioindicators from the Galician coast (Ria de Vigo, Spain). Received: 30 June 1998 / Revised: 17 September 1998 / Accepted: 22 September 1998  相似文献   

17.
The three-stage BCR sequential step reference extraction procedure was applied to the reference material BCR CRM 601, especially developed for fractionation studies. Extracted fractions were analyzed for Cr, Ni, Zn, Cd, and Pb, by k 0-standardized instrumental neutron activation (k 0 INAA) and proton induced X-ray emission (PIXE), and flame atomic absorption spectrometry (FAAS). Sample preparation procedures were developed for both k 0 INAA and PIXE techniques, related to the evaporation of the solutions in order to get solid samples for neutron and proton irradiation. Quality control was assessed by intercomparison of the analytical results obtained by the applied techniques, which included results for a few certified reference materials. In the extracted fractions, chromium concentration was not determined accurately by both nuclear techniques. Concerning Cd, Ni, Pb, and Zn, the results were in general in good agreement with the certified values and FAAS. Some incomplete separation of the residue might have occurred.  相似文献   

18.
A procedure for direct determination of trace elements in muscle tissue of hairtail was developed using inductively coupled plasma-atomic emission spectrometry and electrothermal vaporization with slurry sampling. Due to use of polytetrafluoroethylene as the chemical modifier, the vaporization behaviors of analytes from the slurry and the aqueous standard solutions were very similar. In this case, the aqueous standards could be used for the calibration of slurry samples. The main factors influencing this method were studied systematically. The detection limits for Cr, Ni, Zn, Cd, and Pb were 3.1, 10.5, 176, 6.9, and 83 ng/mL, respectively, and the relative standard deviations were less than 10%. The proposed method was applied to the determination of trace Cr, Ni, Zn, Cd, and Pb in hairtail samples with satisfactory accuracy and precision. A certified reference material of mussel (GBW 08571) was analyzed, and good agreement was obtained between the results from the proposed method and certificate values.  相似文献   

19.
A sol-gel zirconia coating was developed for the preconcentration/separation of trace Cr, Cu, Cd and Pb by capillary microextraction, and the adsorbed analytes were on-line eluted for detection using inductively coupled plasma mass spectrometry (ICP-MS). By immobilizing sol-gel zirconia on the inner surface of a fused-silica capillary, the sol-gel zirconia coating was simply prepared. Its adsorption properties, stability and the factors affecting the adsorption behaviors of Cr, Cu, Cd and Pb were investigated in detail. In the pH range from 7.8 to 10, the zirconia-coated capillary (35 cm x 0.15 mm) is selective towards Cr, Cu, Cd and Pb, and the analyzed ions could be desorbed quantitatively with 0.2 mL of 0.5 mol/L HNO(3) at a rate of 0.2 mL/min. With a consumption of 1.25 mL sample solution, an enrichment factor of 6.25, and detection limits (3sigma) of 9.9 pg/mL Cr, 17.9 pg/mL Cu, 4.5 pg/mL Cd and 3.7 pg/mL Pb were obtained. The precisions for nine replicate measurements of 1 ng/mL Cr, Cu, Cd and Pb were 4.9% Cr, 2.2% Cu, 2.0% Cd and 3.2% Pb (RSD), respectively. The proposed procedure has been applied to the determination of Cr, Cu, Cd and Pb in human urine, which was subjected to microwave-assisted digestion prior to analysis, and the recoveries for these elements were 89.2-101.8%. In order to validate the developed procedure, a NIES No.10-a Rice Flour-Unpolished certified reference material and a BCR No. 184 Bovine Muscle certified reference material were analyzed, and the results are in good agreement with the certified values.  相似文献   

20.
The current BCR procedure for metal fractionation recommended by the Standard Measurement and Testing Programme requires rather time-consuming sample pretreatment. Ultrasonic energy seems to be an attractive alternative for leaching metal from solid samples into a liquid extractant phase. This study aims at optimizing ultrasonic extraction in order to replace the BCR method of leaching using acetic acid and to apply the procedure of assessing element mobility in bottom sediment rich in moderately soluble carbonate minerals. The application of ICP-MS allowed the determination of As, Cd, Cr, Cu, Pb, Ni, Tl and Zn in extracts, in a wide range of concentration without any special treatment. Finally, 40’min extraction in an ultrasonic bath was proposed for evaluation of the mobile fraction of As, Cd, Cr, Cu, Pb and Zn as an assessment of environmental risk. The recovery of the ultrasound-assisted extraction in comparison to the shake-filter method, as applied in the common BCR procedure, was slightly higher than 100% for As, Cr and Pb, reasonably high (about 70%) for Cd, Zn and Cd, but did not exceed 21% for Tl. Also, the mobility and extractability (relative mobility) of the studied elements from sediment collected over one year were compares. According to the results obtained after 40’min of ultrasound-assisted extraction it can be concluded that mobility did not change over one year for Cr, Cu, As, Cd, Ni and Tl, but noticeable differences for Zn and Pb were observed. The total content of all studied elements was almost the same in samples taken in the years 2003 and 2004, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号