首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Mao S  Gao D  Liu W  Wei H  Lin JM 《Lab on a chip》2012,12(1):219-226
In this work, we developed a microfluidic device for the imitation of drug metabolism in human liver and its cytotoxicity on cells. The integrated microfluidic device consists of three sections: (1) bioreactors containing poly(ethylene) glycol (PEG) hydrogel encapsulated human liver microsomes (HLMs); (2) cell culture chambers for cytotoxicity assay; and (3) integrated micro solid-phase extraction (SPE) columns to desalt and concentrate the products of enzymatic reaction. To verify the feasibility of the integrated microchip, we studied uridine 5'-diphosphate-glucuronosyltransferase (UGT) metabolism of acetaminophen (AP) and the cytotoxicity of products on HepG2 cells. The products of the reaction in one region of the device were injected into the cell culture chamber for cytotoxicity assay, while those in another region were directly detected online with an electrospray ionization quadrupole time-of-flight mass spectrometer (ESI-Q-TOF MS) after micro-SPE pre-treatment. Semiquantitative analysis achieved in the experiments could be related to the drug-induced HepG2 cell cytotoxicity. Total analysis time for one product was about 30 min and only less than 4 μg HLM protein was required for one reaction region. The results demonstrated that the established platform could be used to imitate drug metabolism occurring in the human liver, thereby replacing animal experiments in the near future. In addition, the integrated microchip will be a useful tool for drug metabolism studies and cytotoxicity assays, which are pivotal in drug development.  相似文献   

2.
Naoghare PK  Kwon HT  Song JM 《Lab on a chip》2007,7(9):1202-1205
An integrated circuit (IC) bipolar semiconductor photodiode array (PDA) microchip system coupled with light emitting diodes (LEDs) was used for rapid, automated cell viability measurements and high-throughput drug efficacy monitoring. Using the absorption property of trypan blue dye against the red light emitted by LEDs, we determined the effect of three anticancer drugs, viz., camptothecin (CAM), sodium salicylate (Na-Sal) and naringenin (Nar) on the cell viability of human promyelocytic leukemia cells (HL-60) and human embryonic kidney cells (HEK-293). Cell viabilities were measured based on the relative reduction in the photo responses of the photodiodes, covered with known concentration of trypan blue-stained cells. The developed method offers greater sensitivity and hence an excellent estimation of cell viability, but without all the hassle of conventional methods. Flow cytometric measurement and confocal microscopy were applied as complementary techniques for further validation of the results. The work presented here has important implications with regard to high-throughput measurement of optimal concentrations of different drugs against different cell lines in vitro.  相似文献   

3.
设计并制作了一种集多孔流分离(Multi-orifice flow fractionation,MOFF)技术与磁捕获技术于一体的用于特异性分离和捕获合成样本中肝癌细胞HepG2的多功能微流控细胞芯片.此芯片由玻璃基片和PDMS微通道盖片组成,PDMS盖片上含有3条进样通道、MOFF分离区和六边形腔体的细胞富集检测区.其中,MOFF分离区总长20 mm,由80组长度为0.18 mm、深度为50μm、收缩区域宽度为0.06 mm、扩张区域宽度为0.20 mm的半菱形收缩/扩张重复单元组成,每组收缩/扩张重复单元间的夹角为103.0°.实验以肝癌细胞HepG2-血细胞混悬液为样本;根据磁珠表面修饰c-Met抗体能与肝癌细胞HepG2特异性结合的原理,通过表面羧基化的磁珠、EDC(1 mg/mL)、NHS(1 mg/mL)和c-Met抗体制备了浓度为50μg/mL的免疫磁珠(Anti-MNCs)悬浮液.在样本流速为50μL/min条件下,利用外加磁场实现了血细胞合成样本中微量肝癌细胞HepG2的有效捕获;采用微波加热法以柠檬酸、硫脲为原料制备了用于荧光标记HepG2的碳量子点,在芯片上实现了血液中肝癌细胞HepG2的原位荧光可视化观测.对芯片检测区捕获到的HepG2进行了显微计数分析,对500μL血细胞(107 cell/mL)中含10个HepG2细胞的合成样本,捕获效率达到88.5%±6.7%(n=20).结果表明,所设计的多模式多功能的微流控芯片具有良好的肿瘤细胞分离和检测功能.  相似文献   

4.
Eisenia bicyclis (Kjellman) Setchell is a common brown alga that inhabits the middle Pacific coast around Korea and Japan. In this study, the ethanol extract and its serial solvent fractions were prepared from fresh E. bicyclis, and their hepatoprotective effects were investigated against hepatotoxicity in tert-butyl hyperoxide(t-BHP)-injured HepG2 cells. When these samples were used at a dose of 10-40 μg/mL?1, they significantly protected the t-BHP-induced cell death in HepG2 cells. Among fractions, ethyl acetate fraction (EF) and n-butanol extract (BF) exhibited potent hepatoprotective activities (62.60% for EF and 64.86% for BF) in t-BHP-injured HepG2 cells at a concentration of 10 μg/mL?1. To find the potential factors for this activity, the samples were characterized on total phenolics, chlorophylls, carotenoids, and radical scavenging activity. Among them, EF showed the highest content of total phenolics and the strongest antioxidant activity both in on- and offline assays. Five phlorotannin compounds, oligomers of phloroglucinol, were isolated chromatographically from this fraction and structurally identified by (1)H-NMR and liquid chromatography-electrospray ionization-mass spectrometry analyses as eckol(1), 6,6'-bieckol(2), 8,8'-bieckol(3), dieckol(4), and phlorofucofuroeckol A(5). Compound 5 among five purified compounds showed the strongest protective activity (45.54%) at a concentration of 10 μM. At the high dose (40 μM), the protective activities of three compounds (compound 2, 4, and 5) were higher than that of quercetin treated with 10 μM concentration. Therefore, we can speculate that they can be developed as potential candidates for natural hepatoprotective agents.  相似文献   

5.
Insulin resistance contributes to several disorders including type 2 diabetes and cardiovascular diseases. Carpachromene is a natural active compound that inhibits α-glucosidase enzyme. The aim of the present study is to investigate the potential activity of carpachromene on glucose consumption, metabolism and insulin signalling in a HepG2 cells insulin resistant model. A HepG2 insulin resistant cell model (HepG2/IRM) was established. Cell viability assay of HepG2/IRM cells was performed after carpachromene/metformin treatment. Glucose concentration and glycogen content were determined. Western blot analysis of insulin receptor, IRS1, IRS2, PI3k, Akt, GSK3, FoxO1 proteins after carpachromene treatment was performed. Phosphoenolpyruvate carboxykinase (PEPCK) and hexokinase (HK) enzymes activity was also estimated. Viability of HepG2/IRM cells was over 90% after carpachromene treatment at concentrations 6.3, 10, and 20 µg/mL. Treatment of HepG2/IRM cells with carpachromene decreased glucose concentration in a concentration- and time-dependant manner. In addition, carpachromene increased glycogen content of HepG2/IRM cells. Moreover, carpachromene treatment of HepG2/IRM cells significantly increased the expression of phosphorylated/total ratios of IR, IRS1, PI3K, Akt, GSK3, and FoxO1 proteins. Furthermore, PEPCK enzyme activity was significantly decreased, and HK enzyme activity was significantly increased after carpachromene treatment. The present study examined, for the first time, the potential antidiabetic activity of carpachromene on a biochemical and molecular basis. It increased the expression ratio of insulin receptor and IRS1 which further phosphorylated/activated PI3K/Akt pathway and phosphorylated/inhibited GSK3 and FoxO1 proteins. Our findings revealed that carpachromene showed central molecular regulation of glucose metabolism and insulin signalling via IR/IRS1/ PI3K/Akt/GSK3/FoxO1 pathway.  相似文献   

6.
In general, copper nanoclusters (CuNCs) possess very low or even virtually no bactericidal effect. Herein,we report a novel CuNCs possessing significantly high antibacterial activity, that is tannic acid (TA)capped CuNCs (TA-CuNCs). TA-CuNCs exhibit strong absorption and excitation-dependent fluorescence within pH 2-12, resulting from the functional groups of TA-CuNCs due to two prototropic equilibria,phenolphenolate and carboxyliccarboxylate. There exists synergistic effect of TA and copper nanoclusters which endows TA-CuNCs remarkable antibacterial capability as a microbicide, as characterized by the effective inhibition on the growth of gram-positive bacteria by damaging the cell membrane. By incubating 1 x 10~7 CFU/mL of gram-positive bacteria Staphylococcus aureus and Bacillus subtilis with 30 μg/mL of TA-CuNCs for 10 min, the bacteria are completely inhibited, while under same conditions the viabilities of gram-negative bacteria Escherichia coli 0157:H7 and Pseudomonas aeruginosa remain 85.0%, 72.0%, respectively. In addition, TA-CuNCs exhibit low cytotoxicity and favorable biocompatibility demonstrated by standard methyl thiazolyl tetrazolium (MTT) assay with HepG2 and 293 Tcells, giving rise to cell viability of 94.2% for HepG2 and 96.7% for 293 T by incubating 10~6 cell/mL with 200 μg/mL of TA-CuNCs for 24 h. These results make TA-CuNCs a potential alternative as bactericide for infection treatment caused by gram-positive bacteria.  相似文献   

7.
Cationic liposomes (CLs) are novel nonviral vectors widely used for delivering drugs or genes. However, applications of CLs are largely hampered by their cytotoxicity, partly because the potential mechanism underlying the cytotoxicity of CLs remains unclear. The aim of the present study was to explore the underlying mechanism of cytotoxicity induced by CLs on HepG2 cells. Differential metabolites were identified and quantified using ultra‐liquid chromatography quadrupole time‐of‐flight mass spectrometry (UHPLC‐Q‐TOF/MS). The toxicity of CLs on HepG2 cells was evaluated by multivariate data analysis and statistics. Additionally, CCK‐8 assay, heatmap, pathway and co‐expression network were carried out to explore the relations between the metabolites and the pathways. The results showed a dose‐dependent toxic effect of CLs on HepG2 cells, with an IC50 value of 119.9 μg/mL. Multivariate statistical analysis identified 42 potential metabolites between CLs exposure and control groups. Pathway analysis showed significant changes in pathways involving amino acid metabolism, energy metabolism, lipid metabolism and oxidative stress in the CLs exposure group vs the control group. Metabolites related to the above‐mentioned pathways included phenylalanine, methionine, creatine, oxalacetic acid, glutathione, oxidized glutathione, choline phosphate and several unsaturated fatty acids, indicating that cells were disturbed in amino acid metabolism, energy and lipid supply when CLs exposure‐induced injury occurred. It is concluded that CLs may induce cytotoxicity by enhancing reactive oxygen species in vitro , affect the normal process of energy metabolism, disturb several vital signaling pathways and finally induce cell death.  相似文献   

8.
Liver cancer has become one of the major types of cancer with high mortality and liver cancer is not responsive to the current cytotoxic agents used in chemotherapy. The purpose of this study was to examine the in vitro cytotoxicity of goniothalamin on human hepatoblastoma HepG2 cells and normal liver Chang cells. The cytotoxicity of goniothalamin against HepG2 and liver Chang cell was tested using MTT cell viability assay, LDH leakage assay, cell cycle flow cytometry PI analysis, BrdU proliferation ELISA assay and trypan blue dye exclusion assay. Goniothalamin selectively inhibited HepG2 cells [IC?? = 4.6 (±0.23) μM in the MTT assay; IC?? = 5.20 (±0.01) μM for LDH assay at 72 hours], with less sensitivity in Chang cells [IC?? = 35.0 (±0.09) μM for MTT assay; IC?? = 32.5 (±0.04) μM for LDH assay at 72 hours]. In the trypan blue dye exclusion assay, the Viability Indexes were 52 ± 1.73% for HepG2 cells and 62 ± 4.36% for Chang cells at IC?? after 72 hours. Cytotoxicity of goniothalamin was related to inhibition of DNA synthesis, as revealed by the reduction of BrdU incorporation. At 72 hours, the lowest concentration of goniothalamin (2.3 μL) retained 97.6% of normal liver Chang cells proliferation while it reduced HepG2 cell proliferation to 19.8% as compared to control. Besides, goniothalamin caused accumulation of hypodiploid apoptosis and different degree of G2/M arrested as shown in cell cycle analysis by flow cytometry. Goniothalamin selectively killed liver cancer cell through suppression of proliferation and induction of apoptosis. These results suggest that goniothalamin shows potential cytotoxicity against hepatoblastoma HepG2 cells.  相似文献   

9.
The combination of propofol, ketamine and rocuronium can be used for anesthesia of ventilated rats. However, reliable pharmacokinetic models of these drugs have yet to be developed in rats, and consequently optimal infusion strategies are also unknown. Development of pharmacokinetic models requires repeated measurements of drug concentrations. In small animals, samples must be tiny to avoid excessing blood extraction. We therefore developed a drug assay system using high‐performance liquid chromatography coupled with quadrupole mass spectrometry that simultaneously determines the concentration of all three drugs in just 10 μL rat plasma. We established a plasma extraction protocol, using acetonitrile as the precipitating reagent. Calibration curves were linear with R2 = 0.99 for each drug. Mean recovery from plasma was 91–93% for propofol, 89–93% for ketamine and 90–92% for rocuronium. The assay proved to be accurate for propofol 4.1–8.3%, ketamine 1.9–7.8% and rocuronium ?3.6–4.7% relative error. The assay was also precise; the intra‐day precisions were propofol 2.0–4.0%, ketamine 2.7–2.9% and rocuronium 2.9–3.3% relative standard deviation. Finally, the method was successfully applied to measurement the three drugs in rat plasma samples. Mean plasma concentrations with standard deviations were propofol 2.0 μg/mL ±0.5%, ketamine 3.9 μg/mL ±1.0% and rocuronium 3.2 μg/mL ±0.8% during ventilation.  相似文献   

10.
《Electrophoresis》2017,38(8):1206-1216
Cell‐on‐a‐chip systems have become promising devices to study the effectiveness of new anticancer drugs recently. Several microdevices for liver cancer culture and evaluation of the drug cytotoxicity have been reported. However, there are still no proven reports about high‐throughput and simple methods for the evaluation of drug cytotoxicity on liver cancer cells. The paper presents the results of the effects of the anticancer drug (5‐fluorouracil, 5‐FU) on the HepG2 spheroids as a model of liver cancer. The experiments were based on the long‐term 3D spheroid culture in the microfluidic system and monitoring of the effect of 5‐FU at two selected concentrations (0.5 mM and 1.0 mM). Our investigations have shown that the initial size of the spheroids has influence on the drug effect. With the increase of the spheroids diameter, the drug resistance (for the two tested 5‐FU concentrations) decreases. This phenomenon was observed both through cells metabolism analysis, as well as changes in spheroids sizes. In our research, we have shown that the lower 5‐FU (0.5 mM) concentration causes higher decrease in HepG2 spheroids viability. Moreover, due to the microsystem construction, we observe the drug resistance effect (10th day of culture) regardless of the initial size of the created spheroids and the drug concentration.  相似文献   

11.
A series of benzenesulfonamide-appended [1,2,3]-triazole hybrids was synthesized by using [3 + 2] cycloaddition of primary, secondary, and tertiary sulfonamide azides with various phenoxymethylacetylenes under click reaction conditions. After structural characterization, the compounds were subjected to in-silico absorption, distribution, metabolism, excretion and toxicity (ADMET) screening to evaluate their drug-likeness and other pharmacokinetic parameters. Furthermore, their in vitro antiplasmodial potential was assessed against Plasmodium falciparum (3D7) strain, and some of the synthesized compounds displayed promising antimalarial potency. On cytotoxicity evaluation using MTT cell viability assay, the most active candidate N-(4,6-dimethylpyridin-2-yl)-4-(4-(4-nitrophenoxy)methyl)-1H-[1,2,3]-triazol-1-yl)benzenesulfonamide ( 14 ; IC50 6.2 μg/mL) demonstrated CC50 7.5 μg/mL against human hepatocarcinoma (HUH-7) cells.  相似文献   

12.
The necessity for the development of new antimicrobial agents due to the ever increasing threat from microbes is causing a rapid surge in research. In the present work, we have shown the efficient antimicrobial activity of a series of amino acid-based hydrogelating amphiphiles through alteration in their counterion. The subtle variation in the counterion from chloride to various organic carboxylates had a significant impact on the antimicrobial properties with notable improvement in biocompatibility toward mammalian cells. Incorporation of a hydrophobic moiety in the counterion augmented the antibacterial property of the amphiphilic hydrogelator as minimum inhibitory concentration (MIC) against the Gram-positive bacterial strain, Bacillus subtilis decreased up to 5-fold (with respect to the chloride) in the case of n-hexanoate. These counterion-varied amphiphilic hydrogelators were also found to be effective against fungal strains (Candida albicans and Saccharomyces cerevisiae) where they exhibited MICs in the range of 1.0-12.5 μg/mL. To widen the spectrum of antibacterial activity, particularly against Gram-negative bacteria, silver nanoparticles (AgNPs) were synthesized in situ within the supramolecular assemblies of the carboxylate hydrogelators. These AgNP-amphiphile soft-nanocomposites showed bactericidal property against both Gram-positive and Gram-negative bacteria. Encouragingly, these carboxylate hydrogelators showed superior biocompatibility toward mammalian cells, HepG2 and NIH3T3, as compared to the chloride analogue at a concentration range of 10-200 μg/mL. Importantly, the AgNP composites also showed sufficient viability to mammalian cells. Because of the intrinsic hydrogelation ability of these counterion-varied amphiphiles, the resulting soft materials and the nanocomposites could find applications in biomedicine and tissue engineering.  相似文献   

13.
Trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA) were reported in our recent publication as novel human high density lipoprotein (HDL) receptor CD36 and Lysosomal integral membrane protein-II Analogous-1 (CLA-1) up-regulators. As part of a broader effort to more fully explore the structure-activity relationships (SAR) of CLA-1 up-regulators, we synthesized a series of hydroxamic acid derivatives and evaluated their CLA-1 up-regulating activities in HepG2 cells. Some compounds exhibited over 10-fold up-regulation of CLA-1 expression in HepG2 cells at 10 μg/mL concentration. The compound 1g showed the best potency, with a lower EC(50) than TSA (EC(50) = 0.32 μM versus 1.2 μM). These compounds provide early new CLA-1 up-regulators with potential for treating atherosclerosis.  相似文献   

14.
以甘油酸为单体,通过本体缩聚制备了水溶性生物降解高分子聚甘油酸,利用聚甘油酸侧基上的羟基固定生物相容性好的疏水性分子胆固醇,通过亲疏水作用自组装形成胶束.以形成的胶束作为载体负载抗肿瘤药物阿霉素,研究了药物的体外释放行为.将肝癌细胞HepG2与载药胶束共培养研究其体外抗肿瘤效果.研究结果表明,聚甘油酸-g-胆固醇共聚物...  相似文献   

15.
Corchorus olitorius L., is a culinary and medicinal herb, widely used as a vegetable in several countries in Asia. Many studies have shown that C. olitorius contains several antioxidants and exhibits anti-inflammatory and anti-proliferative activities in various in vitro and in vivo settings. Recently, C. olitorius has been approved for its antitumor activity; however, the underlying molecular mechanisms remain unclear. The goal of this study was to investigate the effects of ethanol extract of C. olitorius (ECO) on the growth of human hepatocellular carcinoma (HepG2) cells and gain some insights into the underlying mechanisms of its action. We found that HepG2 cells, treated with ECO for 24 h at a concentration higher than 12.5 μg/mL, displayed a strong reduction in cell viability, whereas normal FL83B hepatocytes were not affected. DNA fragmentation and nuclear condensation were evidenced by the increased subG1 population of ECO-treated HepG2 cells. ECO triggered the activation of procaspases-3 and -9 and caused the cleavage of downstream substrate, poly ADP-ribose polymerase (PARP), followed by down-regulation of the inhibitor of caspase-activated DNase (ICAD) signaling. Moreover, the increased release of cytochrome c from mitochondria with decreased membrane potential demonstrated the apoptosis induced through the caspases cascade. Our findings indicated that ECO might be effective against hepatocellular carcinoma through induction of apoptosis via mitochondria-dependent pathway.  相似文献   

16.
A novel method based on fluorescence detection of hydrogel encapsulated cells in microchannels was developed for anticancer drug analysis. In this work, human hepatoma HepG2 cells and human lung epithelial A549 cells were simultaneously immobilized inside two different shapes of three-dimensional hydrogel microstructures using photolithography approach on a same array. Microarrays of living cells offer the potential for parallel detection of many cells and thereby enable high-throughput assays. Using a photolithographic setup, we investigated the prepolymer composition and crosslinking parameters that influenced cell viability inside photocrosslinked hydrogels. The viability of cells encapsulated inside hydrogel microstructures was higher than 90% under optimized photocrosslinking conditions. The cells were further cultured under stable conditions and remained viable for at least three days that were able to carry out cell-based assays. Furthermore, we studied the variation of two intracellular redox parameters (glutathione and reactive oxygen species) in anticancer drug-induced apoptosis in HepG2 and A549 cells. Two anticancer drugs exhibited distinct effects on the levels of intracellular glutathione and reactive oxygen species, indicating the selectivity of these drugs on the disturbance of redox balance within cells. The established platform provides a convenient and fast method for monitoring the effect of anticancer drugs on tumor cells, which is very useful for fundamental biomedical research.  相似文献   

17.
《Electroanalysis》2006,18(22):2202-2209
A simple and rapid method has been developed for the analysis of four nonsteroidal anti‐inflammatory drugs (NSAIDs) in serum using microchip capillary electrophoresis with pulsed amperometric detection. The selected NSAIDs (salicylic acid, acetaminophen, diflunisal, and diclofenac) are among the most commonly used drugs to treat fever, inflammation, and pain. Used above the therapeutic levels, these drugs can cause a wide variety of adverse effects and their fast analysis could have a significant impact in treatment and recovery of the patients. Several conditions, including separation potential, pH, and concentration of the electrolyte solution were studied to optimize the separation and detection. In this study, salicylic acid, acetaminophen, diflunisal, and diclofenac were separated in less than 2 minutes using a 5 mM borate buffer at pH 11.5 and a separation potential of +1200 V. Linear relationships were obtained between the concentration and peak current in the 0.5–15.3 μg/mL range and detection limits around 0.26 μg/mL. After 30 consecutive injections, the stability of both the response and migration time of the analytes showed relative related deviations of less than 4.6% and 1.0%, respectively. The potential of this method was verified by spiking a bovine serum sample with the four NSAIDs and analyzing the recovery ratio.  相似文献   

18.
In this work, the establishment of a glass spray mass spectrometry (GS-MS) platform for direct cell-based drug assay was described. Cell co-culture, drug-induced cell apoptosis, proliferation analysis and intracellular drug absorption measurement were performed simultaneously on this specifically designed platform. Two groups of co-cultured cells (NIH-3T3/HepG2 and HepG2/MCF-7) were cultivated and they showed high viability within 3 days. The biocompatibility of the platform facilitated the subsequent bioassays, in which, cyclophosphamide (CPA) and genistein were used as the model drugs. The distinctions of cell apoptosis and proliferation between the mono-cultured and co-cultured cells were clearly observed and well explained by in situ GS-MS measurements. A satisfactory linearity of the calibration curve between the relative MS intensity and CPA concentrations was obtained using stable isotope labeling method (y = 0.16545 + 0.0985x, R2 = 0.9937). The variations in the quantity of absorbed drug were detected and the results were consistent with the concentration-dependence of cell apoptosis. All the results demonstrated that direct cell-based drug assay could be performed on the stable isotope labeling assisted GS-MS platform in a facile and quantitative manner.  相似文献   

19.
以天然氨基酸L-谷氨酸为原料,通过收敛法合成了聚(L-谷氨酸)树状分子,通过半胱氨酸将抗肿瘤药物甲氨蝶呤( MTX)键合到聚(L-谷氨酸)树状分子上,构建氧化还原敏感的药物传输系统.用核磁(1H~NMR)等对载体以及载药粒子进行了表征.体外释放研究发现,载药粒子具有良好的氧化还原响应性,在不同浓度的还原剂二硫苏糖醇(D...  相似文献   

20.
微流控细胞芯片LED诱导荧光检测微系统   总被引:1,自引:0,他引:1  
基于微流控细胞芯片分析技术和微机电系统(MEMS)加工技术, 设计制作了阵列式微流控细胞检测芯片, 采用自组装的顶窗型光电倍增管(PMT)和信号采集电路采集芯片微管道内流动细胞的荧光信号, 构建了一种针对低浓度细胞悬浮液的微流控细胞芯片发光二极管(LED)诱导荧光的快速检测微系统, 实现了对低浓度(≤40 Cell/mL)荧光标记的HepG2肝癌细胞悬浮液样本的定量计数和测试, 而且在血液细胞共存的条件下, 仍可以有效地对血液中少量HepG2肝癌细胞进行荧光计数和测试. 整个系统结构简单, 操作方便且检测灵敏度较高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号