首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrathin films of a cross-linked and chemically distinct conjugated poly(p-phenylene) network via electropolymerization are described. The amphiphilic network precursor was synthesized by incorporating the alkoxy carbazole group (-O(CH2)5Cb) to a poly(p-phenylene) (C6PPPOH) backbone. In order to investigate the combined thin film electrochemical and photophysical properties of poly(p-phenylene)s and polycarbazole conjugated polymers, C6PPPC5Cb was deposited on substrates using the Langmuir Blodgett Kuhn (LBK) method. The monolayer isotherm of the polymer, C6PPPC5Cb, showed a liquid expanded region slightly different from the parent polymer C6PPPOH. Multilayers (up to 30 layers) were transferred to different substrates such as quartz, gold coated LaSFN9 and ITO substrates for analysis. For conversion to a conjugated polymer network (CPN) film, the electroactive carbazole group was electropolymerized using cyclic voltammetry (CV) resulting in polycarbazole linking units. The differences in the film properties and corresponding changes in the electrochemical behavior indicate the importance of film thickness and electron/ion transport process in cross linked network films. From the electrochemical studies, the scan rate was found to have a considerable effect on electropolymerization with higher oxidation and reduction peak values found for the rigid network polymer compared to the uncrosslinked polymers.  相似文献   

2.
Three conjugated polymers containing oligothiophene units (from one to three thiophene rings) and aromatic 1,3,4-oxadiazole moieties have been successfully synthesized. The polymer structures were characterized and confirmed by (1)H and (13)C NMR, FT-IR, and elemental analysis. Thermogravimetric analysis demonstrated that the polymers are highly thermal stable. Tunable absorption (from 342 to 428 nm) and fluorescence (from 411 to 558 nm) properties of polymers were observed. The electrochemical investigation indicated that the LUMO and HOMO energy levels of the new polymers could be adjusted. It was also revealed by the electrochemical analysis that the polymers have good charge injection properties for both p-type and n-type charge carriers, as well as good color tunable luminescence and film-forming properties, which makes them potentially useful for fabricating efficient light-emitting devices.  相似文献   

3.
Despite the great potential of both π‐conjugated organoboron polymers and BN‐doped polycyclic aromatic hydrocarbons in organic optoelectronics, our knowledge of conjugated polymers with B?N bonds in their main chain is currently scarce. Herein, the first examples of a new class of organic–inorganic hybrid polymers are presented, which consist of alternating NBN and para‐phenylene units. Polycondensation with B?N bond formation provides facile access to soluble materials under mild conditions. The photophysical data for the polymer and molecular model systems of different chain lengths reveal a low extent of π‐conjugation across the NBN units, which is supported by DFT calculations. The applicability of the new polymers as macromolecular polyligands is demonstrated by a cross‐linking reaction with ZrIV.  相似文献   

4.
Hexa‐peri‐hexabenzocoronene (HBC) is a discotic‐shaped conjugated molecule with strong π–π stacking property, high intrinsic charge mobility, and good self‐assembly properties. For a long time, however, organic photovoltaic (OPV) solar cells based on HBC demonstrated low power conversion efficiencies (PCEs). In this study, two conjugated terpolymers, poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5′‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT)‐ 5 HBC and PCDTBT‐ 10 HBC, were synthesized by incorporating different amounts of HBC as the third component into poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5′‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT) through Suzuki coupling polymerization. For comparison, the donor–acceptor (D –A) conjugated dipolymer PCDTBT was also synthesized to investigate the effect of HBC units on conjugated polymers. The HBC‐containing polymers exhibited higher thermal stabilities, broader absorption spectra, and lower highest‐occupied molecular orbital (HOMO) energy levels. In particular, the field‐effect mobilities were enhanced by more than one order of magnitude after the incorporation of HBC into the conjugated polymer backbone on account of increased interchain π–π stacking interactions. The bulk heterojunction (BHJ) polymer solar cells (PSCs) fabricated with the polymers as donor and PC71BM as acceptor demonstrated gradual improvement of open‐circuit voltage (VOC) and short‐circuit current (JSC) with the increase in HBC content. As a result, the PCEs were improved from 3.21 % for PCDTBT to 3.78 % for PCDTBT‐ 5 HBC and then to 4.20 % for PCDTBT‐ 10 HBC.  相似文献   

5.
With their bent π-systems, cyclic conjugation and inherent cavities, conjugated nanohoops are attractive for organic electronics applications. For ease of processing and morphological stability, an incorporation into polymers is desirable, but to date was hampered with few exceptions by synthetic difficulties. We herein present a unique strategy for the synthesis of conjugated nanohoop polymers using a dibenzo[a,e]pentalene (DBP) as central connector. We demonstrate this versatility by synthesizing three electronically diverse copolymers with dithienyldiketo(pyrrolopyrrol), fluorene and carbazole comonomers, and report the first donor-acceptor nanohoop polymer. Optoelectronic investigations reveal the prevalence of cyclic or linear conjugation, depending on the comonomer unit, and ambipolar electrochemical properties through the antiaromatic character of the DBP units. As the first report on using conjugated nanohoops for charge storage as positive electrode materials, we show a significant improvement in battery performance in a nanohoop-containing polymer compared to an equivalent nanohoop-free reference polymer. We believe this study will pave the way for the synthesis of a diverse range of nanohoop polymers and further stimulate their exploration for charge storage in batteries.  相似文献   

6.
The incorporation of insulating polymers into conjugated polymers has been widely explored as a strategy to improve mechanical properties of flexible organic electronics. However, phase separation due to the immiscibility of these polymers has limited their effectiveness. In this study, we report the discovery of multiple non-covalent interactions that enhances the miscibility between insulating and conjugated polymers, resulting in improved mechanical properties. Specifically, we have added polyvinyl chloride (PVC) into the conjugated polymer PM6 and observed a significant increase in solution viscosity, indicative of favorable miscibility between these two polymers. This phenomenon has been rarely observed in other insulating/conjugated polymer composites. Thin films of PM6/PVC exhibit a much-improved crack-onset strain of 19.35 %, compared to 10.12 % for pristine PM6 films. Analysis reveal that a “cyclohexyl-like” structure formed through dipole-dipole interactions and hydrogen bonding between PVC and PM6 acted as a cross-linking site in the thin films, leading to improved mechanical properties. Moreover, PM6/PVC blend films have demonstrated excellent thermal and bending stability when applied as an electron donor in organic solar cells. These findings provide new insights into non-covalent interactions that can be utilized to enhance the properties of conjugated polymers and may have potential applications in flexible organic electronics.  相似文献   

7.
共轭高分子材料特异的金属或半导体的电子特性兼有质轻、价廉、易于加工的优点使其在有机场效应晶体管、有机太阳能电池和有机发光二极管等领域显示了重要的应用前景.然而,尽管经过几十年的不断研究,共轭高分子材料种类及其相关器件性能均已得到显著发展,但是共轭高分子材料的本征电荷传输特性仍不清楚,其研究面临巨大挑战,这主要是由共轭高分子材料本身分子量分布弥散、分子间相互缠结以及在常规旋涂薄膜器件中分子高度无序等特性所决定的.从调控共轭高分子聚集态结构的角度出发,不断提高共轭高分子的结构有序性及减小电荷传输过程中的晶界及缺陷密度,是实现共轭高分子材料本征性能认识的有效途径之一.本文首先简单归纳总结了研究者在共轭高分子多尺度聚集态结构调控及性能研究方面的初步结果,进一步结合国内外相关研究进展,重点对共轭高分子晶体方面的工作展开详细介绍,最后对该领域未来发展的挑战及机遇进行了简单评述.  相似文献   

8.
ABSTRACT

Persistently doped conjugated polymers are integral for energy storage, flexible electronics, and biosensors due to their unique ability to interact with both ionic and electronic currents. To maximise the performance of devices across these fields, research has focused on controlling material properties to optimise conductivities of both types of charge carriers. The challenge lies in improving ionic transport, which is typically the rate-limiting step in redox processes, without sacrificing electronic conductivity or desirable mechanical properties. Here we report on control of nanostructure in vapour deposited conducting polymer films and correlate changes in film structure with resulting electrochemical properties. Structural control is enabled by exploiting the growth of oxidant nanoaggregates during the reactive vapour deposition process. Relative to dense films, porous films exhibit faster response times in electrochemical testing. Scan rate analysis confirms a transition away from diffusion-limited charging kinetics and demonstrates the important role that porosity can play in ion transport through electroactive polymers. Advantageously, continuous polymer networks remain evident in nanostructured films, ensuring that high electronic conductivities are maintained along with high porosity. We find that such enhanced properties are retained even as polymer thickness increases ten-fold. The films reported herein may serve as robust electrodes in flexible electrochemical devices.  相似文献   

9.
近几十年,二次锂电池作为重要的储能装置得到迅猛发展,而开发高性能的锂电池电极材料一直是电化学能源领域的研究热点之一。与传统无机正极材料相比,聚合物正极材料具有比容量高、柔软性好、廉价易得、环境友好、加工方便、可设计性强等诸多优点。本文综述了导电聚合物、共轭羰基聚合物以及含硫聚合物正极材料的结构特点、电极反应机理、电化学性能和近五年来的重大研究进展,总结了这三类聚合物电极材料的优缺点,并重点介绍了含硫聚合物电极材料中存在的问题及改进手段,最后提出了综合这三类聚合物优点的含硫共轭导电聚合物将会是该领域的研究方向。  相似文献   

10.
以六羰基钨[W(CO)6]为催化剂, 合成了聚吲哚芴(P1)、 聚梯型四苯(P2)、 聚梯型五苯(P3)和小分子9-联吲哚芴烯(S1).该类聚合物的重复单元含有联芴烯结构, 通过芴9位的双键连接. 光学和电化学等实验结果表明, 聚合物无荧光发射, 是一类窄带隙的共轭聚合物, 其中聚合物P1薄膜的紫外吸收值最大波长为710 nm.  相似文献   

11.
偶氮苯侧链型高分子由于其含有偶氮苯基团 ,在光作用下会发生可逆的顺反异构过程 ,具有光致取向特性 ,在光学处理、衍射光学、投影显示、光开关等许多方面具有潜在的应用性[1] .近 1 0多年来国内外学者对此类化合物进行了广泛的研究 ,已有文献报道可利用Ar+激光束在偶氮苯聚合物薄膜上直接“写入”表面凸起光栅 ,并且通过原子力显微镜观测到光栅起伏 .这种光栅很稳定 ,并可以利用光学方法“擦去” .偶氮苯聚合物上述独有的性质引起了许多学者的兴趣[2 ,3] .另一方面 ,由于旋光性聚合物在光学物理性质上的优势 ,我们已将手性基团引入偶氮苯…  相似文献   

12.
《化学:亚洲杂志》2018,13(16):2014-2018
In π‐conjugated polymers (πCPs), crystallinity and fluorescence typically exhibit a trade‐off relationship. Here, we have synthesized a highly crystalline and fluorescent π‐conjugated polymer with a simple alternating structure of 1,2,4,5‐tetrafluorophenylene and 3,3′‐dihexyl‐2,2′‐bithiophene units. In film, the polymer exhibited efficient red‐colored fluorescence, an improved quantum yield (Φsol=13 %→Φfilm=23 %) and a crystalline structure. Interestingly, supramolecular gel formation occurred in appropriate solvents, and the macrostructure and fluorescence properties of the gel could be directly controlled by the choice of the solvent. The polymer self‐assembled into a spherical form that exhibited red fluorescence in non‐aromatic solvent (1,2‐dichloroethane) and into a fibrous form that exhibited yellow fluorescence in aromatic solvent (mesitylene).  相似文献   

13.
The significance of inorganic main‐group polymers is demonstrated most clearly by the commercial relevance of polysiloxanes (silicones). Organoboron‐based materials such as π‐conjugated organoborane polymers and BN‐doped polycyclic aromatic hydrocarbons are currently attracting considerable attention. Surprisingly, poly(iminoborane)s (PIBs; [BRNR′]n), that is, the parent unsaturated BN polymers, which are formally isoelectronic to polyacetylene, have not been convincingly characterized thus far. Herein, we present the synthesis and comprehensive characterization of a linear oligo(iminoborane), which comprises a chain of 12–14 BN units on average. With our synthetic approach, unwanted side reactions that result in borazine formation are effectively suppressed. Supporting DFT and TD‐DFT calculations provide deeper insight into the microstructure and the electronic structure of the oligomer.  相似文献   

14.
The polymerization of N,N′-bis(trimethylsilyl)-substituted aromatic diamines with 4-chloroformylphthalic anhydride in various solvents at a temperature range between 10 and 70°C afforded polyamide-amic acid trimethylsilyl esters having inherent viscosities of 0.8–1.4 dL/g. Transparent and flexible films of the silylated precursor polymers were obtained by casting directly from the polymer solutions. Desilylation of the silylated polymers with methanol resulted in the formation of the corresponding polyamide-amic acids. Subsequent thermal imidization of the silylated precursor polymers with the elimination of trimethylsilanol afforded yellow, transparent, and tough films of the aromatic polyamide-imides. The thermal conversion of the silylated precursor polymer to polyamide-imide proceeded almost as rapidly as that of the corresponding polyamide-amic acid prepared by a conventional method from the parent aromatic diamine and 4-chloroformylphthalic anhydride.  相似文献   

15.
In this paper, we report a novel electrochemical doping method for conducting polymer films based on bipolar electrochemistry. The electrochemical doping of conducting polymers such as poly(3-methylthiophene) (PMT), poly(3,4-ethylenedioxythiophene) (PEDOT), and poly(aniline) (PANI) on a bipolar electrode having a potential gradient on its surface successfully created gradually doped materials. In the case of PEDOT film, the color change at the anodic side was also observed to be gradually transparent. PANI film treated by the bipolar doping gave a multicolored gradation across the film. The results of UV-vis and energy dispersive X-ray analyses for the doped films supported the distribution of dopants in the polymer films reflecting the potential gradient on the bipolar electrode. Furthermore, the reversibility of the bipolar doping of the PMT film was demonstrated by a spectroelectrochemical investigation.  相似文献   

16.
A series of new polybenzimidazopyrrolones (polypyrrolone, PPy) were synthesized by polycondensation of pyridine‐bridged aromatic tetraamines, including 2,6‐bis (3′,4′‐diaminophenyl)‐4‐phenylpyridine and 2,6‐bis(3′,4′‐ diaminophenyl)‐4‐(3″‐trifluoromethyl)phenyl pyridine, with various aromatic dianhydrides. Experimental results indicated that the PPys, multiaromatic conjugated and semiladder polymers, showed good thermal stabilities with thermal‐decomposition temperatures of about 500 °C and residual weight retention at 750 °C as high as 84%. PPy films could be obtained by casting the precursor solution, poly(amide amino acid) on glass substrate, followed by thermal dehydrating at elevated temperatures. The polymer films exhibited excellent alkaline hydrolysis resistance, which retained their original shapes and toughness after boiling 7 days in 10% sodium hydroxide solution. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1845–1856, 2004  相似文献   

17.
Hyperbranched polymer structures represent a class of high-functionality building blocks with excellent three-dimensional topology for the construction of highly substituted conjugated polymers. In this contribution, an efficient microwave synthesis protocol toward the synthesis of conjugated hyperbranched polymers is presented. A novel series of soluble hyperbranched polyfluorenes (PTF1-PTF3) incorporating triazatruxene moiety as the branch units with various branching degrees have thus been successfully constructed with good yields and high molecular weight via a facile “A2+B2+C3” approach. The structures of the hyperbranched polymers were confirmed by NMR and GPC. Their thermal, optical, and electrochemical properties of the hyperbranched polymers were also investigated. The results showed that introduction of triazatruxene units into the hyperbranched structure endowed the polymer with good thermal stability and highly amorphous properties. Photophysical investigation of PTFx revealed strong blue emission in both solution and solid states. Hyperbranched polymers with higher degree of branching and proper content of linear fluorene units exhibited better photophysical properties in terms of narrow emission spectra and relatively high quantum efficiency as well as improved thermal spectral stability. The triazatruxene branching unit also played a role in raising the HOMO energy levels relative to those of polyfluorenes that would help to improve the charge injection and transport properties. The incorporation of triazatruxene unit into hyperbranched polymers has thus explored an effective avenue for constructing optoelectronic polymers with improved functional characteristics.  相似文献   

18.
利用重氮偶合反应和后重氮偶合反应制备了主链和端基含有不同假芪型偶氮苯生色团的超支化偶氮聚合物.利用氢核磁共振、紫外光谱、红外光谱等分析手段确定了合成聚合物的结构、玻璃化转变温度和光谱特性等.研究了聚合物光致二向色性的性能,此聚合物的取向有序度为0.063.用两束相干的P偏振Ar+激光对聚合物膜进行光加工,得到形状规则的正弦波形表面起伏光栅,末端偶氮苯基团的引入极大地增加了超支化偶氮聚合物的光响应速度.  相似文献   

19.
Conjugated polymers are widely applied in optoelectronic devices due to their excellent optoelectronic properties, solution processibility, and intrinsic flexibility. High-performance films could be achieved with joint efforts from both molecular structure and film solid microstructure. Herein, research progress of the relationship between microstructure and electrical/mechanical performance of poly{[N,N'-bis(2-octyldodecyl)-representative of n-type donor-acceptor conjugated polymers, is reviewed. Its strong aggregation in solution is underlined and the methods to tune the degree of aggregation, such as solvent quality, molecular weight, and regioregularity, are compared. A liquid-crystalline behavior is evidenced in highly concentrated solutions during film drying, which favors the formation of highly anisotropic structures. Moreover, alignment techniques and thermal annealing are used to regulate molecular orientation and polymorphism in films. These structure characteristics offer great potential for researchers to handle film performances. Up to now, more attention has been paid to optimize the electrical performance of the devices. Achieving high-performance n-type conjugated polymer films with both superior mechanical and electrical properties is a newly emerging focus.  相似文献   

20.
We report on the synthesis, electropolymerization, and nanoparticle formation of a series of electroactive carbazole-terminated dendronized linear polynorbornenes prepared by living ring-opening metathesis polymerization (ROMP). The molecular weight (MW) of the dendronized polymers was controlled by varying the feed ratio between the dendronized monomer and first-generation Grubbs' catalyst. Ultrathin films were prepared by electrodeposition. The electrochemical behavior and viscoelastic properties of such films were found to be highly dependent on the dendron generation and linear polymer MW as studied by electrochemical quartz crystal microbalance (E-QCM). Moreover, nanoparticle formation and size/shape control were observed by tuning the surface wetting properties of the substrate during adsorption and by intramolecular cross-linking via chemical oxidation in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号