首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanically responsive organic luminescent crystals are one of the promising choices of materials for flexible photonic devices. However, the change in phosphorescence emission as a function of the flexibility of a crystal has never been reported. Our current findings demonstrate two-dimensional (2D) and one-dimensional (1D) macroscopic elastic deformability, under mechanical stress, in elastically flexible single crystals of dibenzothiophene, and its brominated derivative, respectively. Unlike the presence of dual fluorescence (FL) and room temperature phosphorescence (RTP) in dibenzothiophene single crystals, the derivative was found to show only RTP. Interestingly, upon elastic deformation, single crystals of the dual emissive dibenzothiophene show a noticeable blue shift (∼20 nm) of RTP emission when compared to their pristine crystals (straight and naturally bent). However, their FL peaks remain nearly unchanged irrespective of the crystal deformation. A hierarchy of structure-elastic functionality to RTP modulation has been quantitatively mapped by rationalizing the role of chalcogen-involved weak interactions.

In response to macroscopic elastical bending, single crystals of dual emissive dibenzothiophene depict a significant blue shift (∼20 nm) of RTP emission when compared to their pristine crystals (straight and naturally bent).  相似文献   

2.
High‐efficiency red room‐temperature phosphorescence (RTP) emissions have been achieved by embedding carbon dots (CDs) in crystalline Mn‐containing open‐framework matrices. The rationale of this strategy relies on two factors: 1) the carbon source, which affects the triplet energy levels of the resulting CDs and thus the spectral overlap and 2) the coordination geometry of the Mn atoms in the crystalline frameworks, which determines the crystal‐field splitting and thus the emission spectra. Embedding the carbon dots into a matrix with 6‐coordinate Mn centers resulted in a strong red RTP with a phosphorescence efficiency of up to 9.6 %, which is higher than that of most reported red RTP materials. The composite material has an ultrahigh optical stability in the presence of strong oxidants, various organic solvents, and strong ultraviolet radiation. A green‐yellow RTP composite was also prepared by using a matrix with 4‐coordinate Mn centers and different carbon precursors.  相似文献   

3.
Aggregation‐induced emission (AIE), thermally activated delayed fluorescence (TADF), room‐temperature phosphorescence (RTP), and mechanoluminescence (ML) have attracted widespread interest. However, a multifunctional organic emitter exhibiting simultaneous AIE, TADF, RTP, and ML has not been reported. Now, two multifunctional blue emitters with very simple structures, mono‐DMACDPS and Me‐DMACDPS, exhibit typical AIE, TADF, and RTP properties but different behavior in mechanoluminescence. Crystal structure analysis reveals that large dipole moment and multiple intermolecular interactions with tight packing mode endow mono‐DMACDPS with strong ML. Combined with the data of crystal analysis and theoretical calculation, the separated monomer and dimer in the crystal lead to the typical TADF and RTP properties, respectively. Simple‐structure mono‐DMACDPS is the first example realizing TADF, RTP, AIE, and ML simultaneously.  相似文献   

4.
Aggregation‐induced emission (AIE), thermally activated delayed fluorescence (TADF), room‐temperature phosphorescence (RTP), and mechanoluminescence (ML) have attracted widespread interest. However, a multifunctional organic emitter exhibiting simultaneous AIE, TADF, RTP, and ML has not been reported. Now, two multifunctional blue emitters with very simple structures, mono‐DMACDPS and Me‐DMACDPS, exhibit typical AIE, TADF, and RTP properties but different behavior in mechanoluminescence. Crystal structure analysis reveals that large dipole moment and multiple intermolecular interactions with tight packing mode endow mono‐DMACDPS with strong ML. Combined with the data of crystal analysis and theoretical calculation, the separated monomer and dimer in the crystal lead to the typical TADF and RTP properties, respectively. Simple‐structure mono‐DMACDPS is the first example realizing TADF, RTP, AIE, and ML simultaneously.  相似文献   

5.
Li L  Zhao Y  Wu Y  Tong A 《Talanta》1998,46(5):1147-1154
In our previous work, we reported that with TlNO(3) as a heavy atom perturber and Na(2)SO(3) as a deoxygenator, room temperature phosphorescence (RTP) emission of dansyl chloride and its amino acid derivatives can be induced directly from their aqueous solution without a protective medium. Is this kind of fluid luminescence phenomenon unique for the dansyl chloride compounds? The present work has shown that many naphthalene derivatives can also exhibit RTP emission in their aqueous solutions under similar conditions in the absence of a protective medium. Such an RTP emission phenomenon could be denoted as nonprotected fluid room temperature phosphorescence (NP-RTP). In order to further understand this new luminescence phenomenon, the substituent group effects and the favorable chemical structure of compounds for NP-RTP emissions are discussed in detail.  相似文献   

6.
The small Stokes shift and weak emission in the solid state are two main shortcomings associated with the boron-dipyrromethene (BODIPY) family of dyes. This study presents the design, synthesis and luminescent properties of boron difluoro complexes of 2-aryl-5-alkylamino-4-alkylaminocarbonylthiazoles. These dyes display Stokes shifts (Δλ, 77–101 nm) with quantum yields (ϕFL) up to 64.9 and 34.7 % in toluene solution and in solid state, respectively. Some of these compounds exhibit dual fluorescence and room-temperature phosphorescence (RTP) emission properties with modulable phosphorescence quantum yields (ϕPL) and lifetime (τp up to 251 μs). The presence of intramolecular H-bonds and negligible π-π stacking revealed by X-ray crystal structure might account for the observed large Stokes shift and significant solid-state emission of these fluorophores, while the enhanced spin-orbit coupling (SOC) of iodine and the self-assembly driven by halogen bonding, π-π and C−Hπ interactions could be responsible for the observed RTP of iodine containing phosphors.  相似文献   

7.
The determination of kinetic parameters for luminescence processes is very important in understanding the phosphorescence process and the mechanisms of the heavy atom effect (HAE). In our previous work, we reported that room temperature phosphorescence (RTP) emission of many naphthalene derivatives can be induced directly from their aqueous solution without using any kind of protective medium, and the name Non-Protected Fluid Room Temperature Phosphorescence (NP-RTP) is suggested for this new type of RTP emission. In order to further understand this kind of luminescence phenomenon, the influence of heavy atom perturber (HAP) concentration on RTP lifetime of several naphthalene derivatives was studied in detail in this paper. The possibility of determination of photophysical parameters for emission of NP-RTP was explored based on the definition on the phosphorescence lifetime and the relation with the concentration of HAP in this paper. A static Stern-Volmer equation for phosphorescence was derived and the luminescence kinetic parameters were calculated. The results obtained by two different ways proved that photophysical parameters for RTP emission can be determined based on the changes of the RTP lifetime.  相似文献   

8.
Nowadays,the development of trip let-involved materials becomes a hot research topic in solid-state luminescence fields.However,the mechanism of trip let-involved emission still remains some mysteries to conquer.Here,we proposed a new concept of excited-state confo rmation capture for the const ructio ns of different types of trip let-involved materials.Firstly,excited-state conformation could be trapped by supramolecular chains in crystal and fo rm a new optimum excited-state structure which is different from that in solution or simple rigid environment,leading to bright thermally activated delayed fluorescence(TADF) emission.Based on excited-state conformation capture methodology,next,we obtained roomtemperature phosphorescence(RTP) by introducing Br atoms for the enhancement of intersystem crossing.It could be concluded from experime ntal results that TADF may originate from aggregate effect while RTP may derive from monomers.Finally,heavy-atom free RTP and ultra RTP were achieved by eliminating aggregate effect.This wo rk could not only exte nd the design methodology of triplet-involved materials but also set clear evidences for the mechanism of triplet-involved emissions.  相似文献   

9.
A D‐A‐D′ type pure organic molecule, named ODFRCZ, has unique triple‐emission character covering fluorescence, phosphorescence, and delayed fluorescence (DF). The phosphorescence of ODFRCZ has a rather long lifetime of about 350 ms at room temperature. One dimer of ODFRCZ with enhanced parallel molecular packing acts more effectively to prompt ISC processes, which further generates room‐temperature phosphorescence (RTP), owing to the larger transition dipole moment and closer energy level between S1 and Tn. ODFRCZ is a rare example of an organic RTP molecule that shows dual‐stimuli responsiveness of dual‐mode mechanochromism (fluorescence red‐shift and RTP/DF on‐off switch) and reversible crystal‐state photochromism. This work may broaden the knowledge for stimuli‐responsive RTP organic molecules and lay the foundation for their wide‐scale applications.  相似文献   

10.
A D‐A‐D′ type pure organic molecule, named ODFRCZ, has unique triple‐emission character covering fluorescence, phosphorescence, and delayed fluorescence (DF). The phosphorescence of ODFRCZ has a rather long lifetime of about 350 ms at room temperature. One dimer of ODFRCZ with enhanced parallel molecular packing acts more effectively to prompt ISC processes, which further generates room‐temperature phosphorescence (RTP), owing to the larger transition dipole moment and closer energy level between S1 and Tn. ODFRCZ is a rare example of an organic RTP molecule that shows dual‐stimuli responsiveness of dual‐mode mechanochromism (fluorescence red‐shift and RTP/DF on‐off switch) and reversible crystal‐state photochromism. This work may broaden the knowledge for stimuli‐responsive RTP organic molecules and lay the foundation for their wide‐scale applications.  相似文献   

11.
Wang  Disen  Wang  Xi  Xu  Chao  Ma  Xiang 《中国科学:化学(英文版)》2019,62(4):430-433
Room-temperature phosphorescence(RTP) has attracted much attention due to its potential applications in the fields of biological imaging, chemical sensors and so forth. Particularly, amorphous metal-free RTP materials show special advantages of low cost and good processability. In addition, non-conjugated polymers have seldom been reported as phosphorescent materials.In this work, a novel non-conjugated amorphous metal-free copolymer composed of brominated olefins and acrylamide was prepared in a facile way, which could engender blue-purple RTP emission. Polymers with different kinds of brominated olefins and different ratios of two monomers have been investigated with the purpose of researching the composition/property relationship that may affect the RTP properties. This unique phenomenon could be due to the clustering of carbonyl and amino units caused molecular interaction, and the heavy-atom effect enhanced intersystem crossing. Meantime, the hydrogen bonding in the system enhanced the conformation rigidification to reduce the non-radiative decay. This work provided a delicate way to construct non-conjugated metal-free RTP materials and supplied a new insight into the development of RTP materials.  相似文献   

12.
Room temperature phosphorescence (RTP) from 2-naphthyl-oxy-acetic acid (NOA) and 1-naphthyl-acetic acid (NAA), with stabilization by use of beta-cyclodextrin (beta-CD) as a host system, has been examined. 2-Bromoethanol and 2,3-dibromopropanol have been evaluated as external heavy atom perturbers to enhance the rate of intersystem crossing and, consequently, populating the triplet state for phosphorescence emission. The deoxygenation of the solutions was achieved chemically by use of sodium sulphite. The spectral characteristics of the phosphorescence emission from these relatively polar compounds and the optimization of the chemical variables involved are reported. The role of the bulkiness of the bromoalcohol employed, in comparison with the unoccupied space of the interior of the cyclodextrin cavity by the guest, is an important factor in the attainment of an effective RTP emission, and should be taken into account in the selection of the appropriate external heavy atom for the observation of RTP from other organic molecules of interest by this approach. 2,3-Dibromopropanol seems a more adequate bromoalcohol than 2-bromoethanol for the observation of RTP emission in the systems investigated.  相似文献   

13.
Supramolecular macrocyclic hosts have long been used in smart materials. However, their triplet emission and regulation at crystal level is rarely studied. Herein, ultralong and universal room-temperature phosphorescence (RTP) is reported for traditional crown ethers. A supramolecular strategy involving chain length adjustment and morphological locking through complexation with K+ was explored as a general method to tune the phosphorescence lifetime in the solid state. A maximum 10-fold increase of lifetime after complex formation accompanied with by invisible to visible phosphorescence was achieved. A deep encryption based on this activated RTP strategy was also facilely fabricated. This work thus opens a new world for supramolecular macrocycles and their intrinsic guest responsiveness offers a new avenue for versatile smart luminescent materials.  相似文献   

14.
The influence of different factors on the room-temperature phosphorescence (RTP) emission from the inclusion complex between alpha-cyclodextrin (alpha-CD) and 6-bromo-2-naphthol (BN) was analyzed. Although RTP signals are detected even in aerated solutions, an efficient enhancement of the phosphorescence emission (about 13 times) is obtained when the solutions of the complex are deaerated with nitrogen bubbling, while quenching is produced when sodium sulfite is used for deoxygenation. Association constants of the 1:1 and 2:1 alpha-CD-BN complexes have been evaluated by molecular absorption and fluorimetric methods. Exciting at 287 nm, the RTP phosphorescence emission showed two maxima located at 500 and 535 nm and a shoulder at 577 nm. The RTP emission increases with the irradiation time of the sample by the xenon lamp of the fluorimeter, until it achieves a constant value after around 10 min of irradiation. The addition of organic molecules such as alcohols and bromoalcohols as a third component of the system produces an enhancement of the RTP emission smaller than that obtained in the absence of them. The calibration graph for BN was linear for the range of concentrations between 0.4 and 2.0 mug ml(-1) with a detection limit of 0.26 mug ml(-1), with relative standard deviation (RSD) (n=6) of 4%, for 1.6 mug ml(-1). The solution was transparent, and there was no precipitation.  相似文献   

15.
Supramolecular macrocyclic hosts have long been used in smart materials. However, their triplet emission and regulation at crystal level is rarely studied. Herein, ultralong and universal room‐temperature phosphorescence (RTP) is reported for traditional crown ethers. A supramolecular strategy involving chain length adjustment and morphological locking through complexation with K+ was explored as a general method to tune the phosphorescence lifetime in the solid state. A maximum 10‐fold increase of lifetime after complex formation accompanied with by invisible to visible phosphorescence was achieved. A deep encryption based on this activated RTP strategy was also facilely fabricated. This work thus opens a new world for supramolecular macrocycles and their intrinsic guest responsiveness offers a new avenue for versatile smart luminescent materials.  相似文献   

16.
《中国化学快报》2023,34(7):107882
The influence of 1H-benzo[f]indole (Bd) and its derivatives on room temperature phosphorescence (RTP) has raised great concern since they were found to significantly affect RTP of the extensively studied carbazole (Cz) derivatives. However, the role of Bd itself existing in Cz-based or other doping systems was still unclear. In order to clarify its intrinsic phosphorescent property, Bd was introduced as a guest into different organic matrixes including substituted Cz derivatives and polymers. The phosphorescence located in 560–620 nm was confirmed to be derived from Bd itself, which can be detected whatever Bd was doped in the crystal or amorphous state of Cz derivatives. The suitable energy gap between Cz derivatives and Bd is the key to achieve ultralong RTP of Bd. Additionally, when doped in polymers with plenty of hydrogen bonds, RTP of Bd with lifetime over 280 ms was easily obtained. Among them, Bd@PHEMA (poly(hydroxyethyl methacrylate) exhibited superior phosphorescence, with yellow afterglow lasting for over 2.5 s. Therefore, this work demonstrated that a new organic RTP phosphor, Bd, is discovered, and ultralong RTP of Bd can be achieved not only doped in Cz derivatives but also in polymers as the hosts.  相似文献   

17.
Pure organic room-temperature phosphorescence(RTP) materials have attracted wide attention owing to their excellent luminescent properties and great potential in various applications. In this work, iminostilbene and its analogues are applied to realize RTP emission by copolymerizing with acrylamide. It can be concluded that the growth of alkane chain in monomers can enhance the lifetime and photoluminescence quantum yield of RTP emission, and polymers with the larger conjugated structure of the ...  相似文献   

18.
As a kind of photoluminescent material, CuI complexes have many advantages such as adjustable emission, variable structures, and low cost, attracting attention in many fields. In this work, two novel two-coordinate CuI-N-heterocyclic carbene complexes were synthesized, and they exhibit unique dual emission properties, fluorescence and phosphorescence. The crystal structure, packing mode, and photophysical properties under different conditions were systematically studied, proving the emissive mechanism to be the locally excited state of the carbazole group. Based on this mechanism, ultralong room-temperature phosphorescence (RTP) with a lifetime of 140 ms is achieved by selective deuteration of the carbazole group. These results deepen the understanding of the luminescence mechanism and design strategy for two-coordinate CuI complexes, and prove their potential in applications as ultralong RTP materials.  相似文献   

19.
Pure organic room temperature phosphorescence (RTP) has been attracting a lot interest recently. So far, many strategies have succeeded in achieving efficient organic RTP materials by increasing the rate of intersystem crossing (ISC) and suppressing non-radiative transitions. In supramolecular chemistry, the control and regulation of molecular recognition based on the role of the host and guest in supramolecular polymers matrix, has attracted much attention. Recently, researchers have successfully achieved room temperature phosphorescence of pure organic complexes through host-guest interactions. The host molecule specifically includes the phosphorescent guest to reduce non-radiative transitions and enhance room temperature phosphorescence emission. This review aims to describe the developments and achievements of pure organic room temperature phosphorescence systems through the mechanism of host-guest interactions in recent years, and demonstrates the exploration and pursuit of phosphorescent materials of researchers in different fields.  相似文献   

20.
Gold(I) complexes, enabling to form linear coordination geometry, are promising materials for manifesting both aggregation-induced emission (AIE) behavior due to strong intermolecular Au–Au (aurophilic) interactions and liquid crystalline (LC) nature depending on molecular geometry. In this study, we synthesized several gold(I) complexes with rod-like molecular skeletons where we employed a mesogenic biphenylethynyl ligand and an isocyanide ligand with flexible alkoxyl or alkyl chains. The AIE behavior and LC nature were investigated experimentally and computationally. All synthesized gold(I) complexes exhibited AIE properties and, in crystal, room-temperature phosphorescence (RTP) with a relatively high quantum yields of greater than 23% even in air. We have demonstrated that such strong RTP are drastically changed depending on the crystal-size and/or crystal growth process that changes quality of crystals as well as the aggregate structure, of e.g., Au–Au distance. Moreover, the complex with longer flexible chains showed LC nature where RTP can be observed. We expect these rod-like gold(I) complexes to have great potential in AIE-active LC phosphorescent applications such as linearly/circularly polarizing phosphorescence materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号