首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Let {p n (t)} n=0 t8 be a system of algebraic polynomials orthonormal on the segment [?1, 1] with a weight p(t); let {x n,ν (p) } ν=1 n be zeros of a polynomial p n (t) (x x,ν (p) = cosθ n,ν (p) ; 0 < θ n,1 (p) < θ n,2 (p) < ... < θ n,n (p) < π). It is known that, for a wide class of weights p(t) containing the Jacobi weight, the quantities θ n,1 (p) and 1 ? x n,1 (p) coincide in order with n ?1 and n ?2, respectively. In the present paper, we prove that, if the weight p(t) has the form p(t) = 4(1 ? t 2)?1{ln2[(1 + t)/(1 ? t)] + π 2}?1, then the following asymptotic formulas are valid as n → ∞:
$$\theta _{n,1}^{(p)} = \frac{{\sqrt 2 }}{{n\sqrt {\ln (n + 1)} }}\left[ {1 + {\rm O}\left( {\frac{1}{{\ln (n + 1)}}} \right)} \right],x_{n,1}^{(p)} = 1 - \left( {\frac{1}{{n^2 \ln (n + 1)}}} \right) + O\left( {\frac{1}{{n^2 \ln ^2 (n + 1)}}} \right).$$
  相似文献   

2.
We study the inverse problem of the reconstruction of the coefficient ?(x, t) = ?0(x, t) + r(x) multiplying ut in a nonstationary parabolic equation. Here ?0(x, t) ≥ ?0 > 0 is a given function, and r(x) ≥ 0 is an unknown function of the class L(Ω). In addition to the initial and boundary conditions (the data of the direct problem), we pose the problem of nonlocal observation in the form ∫0Tu(x, t) (t) = χ(x) with a known measure (t) and a function χ(x). We separately consider the case (t) = ω(t)dt of integral observation with a smooth function ω(t). We obtain sufficient conditions for the existence and uniqueness of the solution of the inverse problem, which have the form of ready-to-verify inequalities. We suggest an iterative procedure for finding the solution and prove its convergence. Examples of particular inverse problems for which the assumptions of our theorems hold are presented.  相似文献   

3.
The paper discusses the asymptotic depth of a reversible circuits consisting of NOT, CNOT and 2-CNOT gates. The reversible circuit depth function D(n, q) is introduced for a circuit implementing a mapping f: Z2n → Z2n as a function of n and the number q of additional inputs. It is proved that for the case of implementation of a permutation from A(Z2n) with a reversible circuit having no additional inputs the depth is bounded as D(n, 0) ? 2n/(3log2n). It is also proved that for the case of transformation f: Z2n → Z2n with a reversible circuit having q0 ~ 2n additional inputs the depth is bounded as D(n,q0) ? 3n.  相似文献   

4.
With an error compensation term in the fractal Rayleigh quotient of PDE eigen-problems,we propose a new scheme by perturbing the mass matrix Mhto Mh=Mh+Ch2mKh,where Khis the corresponding stif matrix of a 2m 1 degree conforming finite element with mesh size h for a 2m-order self-adjoint PDE,and the constant C exists in the priority error estimationλh jλj~Ch2mλ2j.In particular,for Laplace eigenproblems over regular domains in uniform mesh,e.g.,cube,equilateral triangle and regular hexagon,etc.,we find the constant C=I h 1Mh2 hKh and show that in this case the computation accuracy can raise two orders,i.e.,fromλh jλj=O(h2)to O(h4).Some numerical tests in 2-D and 3-D are given to verify the above arguments.  相似文献   

5.
6.
It is shown that if P m α,β (x) (α, β > ?1, m = 0, 1, 2, …) are the classical Jaboci polynomials, then the system of polynomials of two variables {Ψ mn α,β (x, y)} m,n=0 r = {P m α,β (x)P n α,β (y)} m, n=0 r (r = m + nN ? 1) is an orthogonal system on the set Ω N×N = ?ub;(x i , y i ) i,j=0 N , where x i and y i are the zeros of the Jacobi polynomial P n α,β (x). Given an arbitrary continuous function f(x, y) on the square [?1, 1]2, we construct the discrete partial Fourier-Jacobi sums of the rectangular type S m, n, N α,β (f; x, y) by the orthogonal system introduced above. We prove that the order of the Lebesgue constants ∥S m, n, N α,β ∥ of the discrete sums S m, n, N α,β (f; x, y) for ?1/2 < α, β < 1/2, m + nN ? 1 is O((mn) q + 1/2), where q = max?ub;α,β?ub;. As a consequence of this result, several approximate properties of the discrete sums S m, n, N α,β (f; x, y) are considered.  相似文献   

7.
In the L p -spaces, we study the complex powers of the operator
$G_\lambda = m^2 I + \Delta - i\lambda \frac{{\partial ^2 }}{{\partial x_1^2 }},0 < \lambda < 1,m > 0,$
where δ is the Laplace operator. The complex powers G λ ?α/2 , Reα > 0, are realized as potential type operators B λ α with a nonstandard metric. We obtain L p L p + L s -estimates for the operator B λ α . By using the method of approximate inverse operators, we construct the inversion of the potentials B λ α φ with L p -densities and describe the range B λ α (L p ) in terms of the inversion constructions.
  相似文献   

8.
We introduce the notion of property (RD) for a locally compact, Hausdorff and r-discrete groupoid G, and show that the set S 2 l (G) of rapidly decreasing functions on G with respect to a continuous length function l is a dense spectral invariant and Fréchet *-subalgebra of the reduced groupoid C*-algebra C r * (G) of G when G has property (RD) with respect to l, so the K-theories of both algebras are isomorphic under inclusion. Each normalized cocycle c on G, together with an invariant probability measure on the unit space G 0 of G, gives rise to a canonical map τ c on the algebra C c (G) of complex continuous functions with compact support on G. We show that the map τ c can be extended continuously to S 2 l (G) and plays the same role as an n-trace on C r * (G) when G has property (RD) and c is of polynomial growth with respect to l, so the Connes’ fundament paring between the K-theory and the cyclic cohomology gives us the K-theory invariants on C r * (G).  相似文献   

9.
We prove the existence of a completely integrable Pfaffian system ?x/?t i = A i (t)x, xR n , t = (t 1, t 2, t 3) ∈ R + 3 , i = 1, 2, 3, with infinitely differentiable bounded coefficients and with lower characteristic set of positive three-dimensional Lebesgue measure.  相似文献   

10.
Let {Q n (α,β) (x)} n=0 denote the sequence of polynomials orthogonal with respect to the non-discrete Sobolev inner product
$\langle f,g\rangle=\int_{-1}^{1}f(x)g(x)d\mu_{\alpha,\beta}(x)+\lambda\int_{-1}^{1}f'(x)g'(x)d\nu_{\alpha,\beta}(x)$
where λ>0 and d μ α,β(x)=(x?a)(1?x)α?1(1+x)β?1 dx, d ν α,β(x)=(1?x) α (1+x) β dx with aα,β>0. Their inner strong asymptotics on (?1,1), a Mehler-Heine type formula as well as some estimates of the Sobolev norms of Q n (α,β) are obtained.
  相似文献   

11.
We introduce two adjoint pairs (e i λ , ( ) i ) and (( ) i , e i ρ ) and give a new method to construct cotorsion pairs. As applications, we characterize all projective and injective representations of a generalized path algebra and exhibit projective and injective objects of the category M p which is a generalization of monomorphisms category.  相似文献   

12.
The renormalized coupling constants g 2k that enter the equation of state and determine nonlinear susceptibilities of the system have universal values g 2k * at the Curie point. We use the pseudo-ε-expansion approach to calculate them together with the ratios R 2k = g 2k /g 4 k-1 for the three-dimensional scalar λ ? 4 field theory. We derive pseudo-ε-expansions for g 6 * , g 8 * , R 6 * , and R 8 * in the five-loop approximation and present numerical estimates for R 6 * and R 8 * . The higher-order coefficients of the pseudo-ε-expansions for g 6 * and R 6 * are so small that simple Padé approximants turn out to suffice for very good numerical results. Using them gives R 6 * = 1.650, while the recent lattice calculation gave R 6 * = 1.649(2). The pseudo-ε-expansions of g 8 * and R 8 * are less favorable from the numerical standpoint. Nevertheless, Padé–Borel summation of the series for R 8 * gives the estimate R 8 * = 0.890, differing only slightly from the values R 8 * = 0.871 and R 8 * = 0.857 extracted from the results of lattice and field theory calculations.  相似文献   

13.
We consider the problem of representing a solution to the Cauchy problem for an ordinary differential equation as a Fourier series in polynomials l r,k α (x) (k = 0, 1,...) that are Sobolev-orthonormal with respect to the inner product
$$\left\langle {f,g} \right\rangle = \sum\limits_{v = 0}^{r - 1} {{f^{(v)}}(0){g^{(v)}}} (0) + \int\limits_0^\infty {{f^{(r)}}(t)} {g^{(r)}}(t){t^\alpha }{e^{ - t}}dt$$
, and generated by the classical orthogonal Laguerre polynomials L k α (x) (k = 0, 1,...). The polynomials l r,k α (x) are represented as expressions containing the Laguerre polynomials L n α?r (x). An explicit form of the polynomials l r,k+r α (x) is established as an expansion in the powers x r+l , l = 0,..., k. These results can be used to study the asymptotic properties of the polynomials l r,k α (x) as k→∞and the approximation properties of the partial sums of Fourier series in these polynomials.
  相似文献   

14.
In the present article, we prove the following four assertions: (1) For every computable successor ordinal α, there exists a Δ α 0 -categorical integral domain (commutative semigroup) which is not relatively Δ α 0 -categorical (i.e., no formally Σ α 0 Scott family exists for such a structure). (2) For every computable successor ordinal α, there exists an intrinsically Σ α 0 -relation on the universe of a computable integral domain (commutative semigroup) which is not a relatively intrinsically Σ α 0 -relation. (3) For every computable successor ordinal α and finite n, there exists an integral domain (commutative semigroup) whose Δ α 0 -dimension is equal to n. (4) For every computable successor ordinal α, there exists an integral domain (commutative semigroup) with presentations only in the degrees of sets X such that Δ α 0 (X) is not Δ α 0 . In particular, for every finite n, there exists an integral domain (commutative semigroup) with presentations only in the degrees that are not n-low.  相似文献   

15.
We consider the following modified version of the Banach-Mazur distance of convex bodies in \(\mathbb{R}^n :d\left( {K,L} \right) = \inf \left\{ {\left| \lambda \right|:\lambda \in \mathbb{R},\tilde K \subset \tilde L \subset \lambda \tilde K} \right\}\), where the infimum is taken over all non-degenerate affine images \(\tilde K\) and \(\tilde L\) of K and L. Gordon, Litvak, Meyer and Pajor in 2004 showed that for any two convex bodies d(K,L) ≤ n, moreover, if K is a simplex and L = ?L then d(K,L) = n. The following question arises naturally: Is equality only attained when one of the sets is a simplex? Leichtweiss in 1959, and later Palmon in 1992 proved that if d(K,B 2 n ) = n, where B 2 n is the Euclidean ball, then K is the simplex. We prove the affirmative answer to the question in the case when one of the bodies is strictly convex or smooth, thus obtaining a generalization of the result of Leichtweiss and Palmon.  相似文献   

16.
We study the linear operator pencil A(λ) = L?λV, λ ∈ ?, where L is the Sturm–Liouville operator with potential q(x) and V is the operator of multiplication by the weight ρ(x). The potential and the weight are assumed to belong to the space W 2 ?1 [0, π]. For the pencil A(λ), we seek formulas for the traces of higher negative orders, i.e., for the sums \(\sum\nolimits_{n = 1}^\infty {\lambda _n^{ - p}} \), p ≥ 2, where λn, n ∈ ?, is the sequence of eigenvalues of the pencil numbered in nondescending order of absolute values. Trace formulas in terms of the weight ρ(x) and the integral kernel of the operator L?1 are obtained, and the relationship between these formulas and the classical results about traces of integral operators is described. The theoretical results are illustrated by examples.  相似文献   

17.
This paper is devoted to a study of L~q-tracing of the fractional temperature field u(t, x)—the weak solution of the fractional heat equation(?_t +(-?_x)~α)u(t, x) = g(t, x) in L~p(R_+~(1+n)) subject to the initial temperature u(0, x) = f(x) in L~p(R~n).  相似文献   

18.
We study metabelian Alperin groups, i.e., metabelian groups in which every 2-generated subgroup has a cyclic commutator subgroup. It is known that, if the minimum number d(G) of generators of a finite Alperin p-group G is n ≥ 3, then d(G′) ≤ C n 2 for p≠ 3 and d(G′) ≤ C n 2 + C n 3 for p = 3. The first section of the paper deals with finite Alperin p-groups G with p≠ 3 and d(G) = n ≥ 3 that have a homocyclic commutator subgroup of rank C n 2 . In addition, a corollary is deduced for infinite Alperin p-groups. In the second section, we prove that, if G is a finite Alperin 3-group with homocyclic commutator subgroup G- of rank C n 2 + C n 3 , then G″ is an elementary abelian group.  相似文献   

19.
A k-total coloring of a graph G is a mapping ?: V (G) ? E(G) → {1; 2,..., k} such that no two adjacent or incident elements in V (G) ? E(G) receive the same color. Let f(v) denote the sum of the color on the vertex v and the colors on all edges incident with v: We say that ? is a k-neighbor sum distinguishing total coloring of G if f(u) 6 ≠ f(v) for each edge uvE(G): Denote χ Σ (G) the smallest value k in such a coloring of G: Pil?niak and Wo?niak conjectured that for any simple graph with maximum degree Δ(G), χ Σ ≤ Δ(G)+3. In this paper, by using the famous Combinatorial Nullstellensatz, we prove that for K 4-minor free graph G with Δ(G) > 5; χ Σ = Δ(G) + 1 if G contains no two adjacent Δ-vertices, otherwise, χ Σ (G) = Δ(G) + 2.  相似文献   

20.
We clarify the relation between the subcategory D_(hf)~b(A) of homological finite objects in D~b(A)and the subcategory K~b(P) of perfect complexes in D~b(A), by giving two classes of abelian categories A with enough projective objects such that D_(hf)~b(A) = K~b(P), and finding an example such that D_(hf)~b(A)≠K~b(P). We realize the bounded derived category D~b(A) as a Verdier quotient of the relative derived category D_C~b(A), where C is an arbitrary resolving contravariantly finite subcategory of A. Using this relative derived categories, we get categorical resolutions of a class of bounded derived categories of module categories of infinite global dimension.We prove that if an Artin algebra A of infinite global dimension has a module T with inj.dimT ∞ such that ~⊥T is finite, then D~b(modA) admits a categorical resolution; and that for a CM(Cohen-Macaulay)-finite Gorenstein algebra, such a categorical resolution is weakly crepant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号