首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The proton and metal complex equilibria of trans-cyclohexane-1,2-diamine-N,N,N',N'-tetrakis(methylenephosphonic acid) (CDTP) with lanthanide(iii) ions, where Ln(III) = La(III), Nd(III), Sm(III), Eu(III), Gd(III), Tb(III), Ho(III) and Lu(III) were studied. The stoichiometry, protonation and complex formation constants were determined by potentiometric titration at 25.0 degrees C and ionic strength of 0.1 mol dm(-3) (KCl). All metal ions form several species: [LnH4L]-, [LnH3L](2-), [LnH2L](3-), [LnHL](4-), [LnL](5-), [LnH(-1)L](6-) and [LnH(-2)L](7-) in the pH range between 2 and 11. The stability constants log beta(LnL) were found to be between 14.7 and 16.7. The studied complexes were also characterized by spectroscopic methods (31P NMR, UV-Vis absorption and emission spectroscopy). These studies allowed to reveal a distinct structural change of the Ln(III)-CDTP complex which occurs between protonated and hydroxy species in solutions at pH around 7.5. The major change is caused by the involvement of both nitrogen donors in the metal ion coordination occurring in ML species. The data obtained from UV-Vis spectroscopy allowed to draw conclusions about complex symmetry and to estimate a number of coordinated water molecules. The hydration number or more precisely the number of two OH oscillators was found to be approximately one in all species formed over the pH range between 5 and 10. The structure of the major hydroxy complex was supported by X-ray crystallographic data. The crystal structures of the Eu(III) and Tb(III) complexes clearly show that the CDTP ligand is coordinated to the Ln(III) ion by two nitrogen and four oxygen atoms in such a way that only one oxygen atom from each phosphonic group is placed in the lanthanide inner sphere. The monomeric complex anion is connected to a symmetry related ion through short hydrogen bonds formed by two hydroxy ions and one water molecule. In this way the two neighbouring anions form a quasi-dimer in which one of the Ln(III) ion is seven-coordinate (two N atoms, four O atoms and one hydroxy ion) and the other is eight-coordinate (two N atoms, four O atoms, one hydroxy ion and one water molecule).  相似文献   

2.
ITC reveals the increasingly importance of entropy for heavier lanthanides binding to nucleotides. The phosphate group forming chelating effect with purine bases but not with pyrimidines.  相似文献   

3.
Zhu X  Lever SZ 《Electrophoresis》2002,23(9):1348-1356
In this study, the kinetic behaviors of four lanthanide ions, Sm(3+), Dy(3+), Yb(3+) and Lu(3+), when mixed with a polyazamacrocyclic chelating agent 1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetic acid (DOTA), were investigated by capillary electrophoresis (CE) in the pH range of 2.0-6.0. At pH 2.0, the formation rate of DOTA-metal complex is extremely low as very little complex was detected after 5 days reaction, whereas almost no free DOTA was found in the mixture of metal ion and DOTA after 4 min at pH 6.0. The second-order kinetic association rate constants of the four lanthanide ions chelates at pH 4.2 were calculated as 1.44 x 10(-2) mM(-1)min(-1), 5.20 x 10(-2) mM(-1)min(-1), 4.56 x 10(-2) mM(-1)min(-1) and 4.54 x 10(-2) mM(-1)min(-1) at 25 degrees C with CE, respectively. In addition, the stability constants of the four lanthanide ions with DOTA were determined by CE at pH 3.0 where approximately 80-90% of the metal ions were associated with DOTA at 25 degrees C. The measured stability constants (log K(f)) of the four DOTA-metal complexes were 23.36, 23.93, 23.39 and 23.06, respectively, and correlated well with published data obtained by different methods. The percentage of metal ion bound with DOTA was evaluated as a function of reactant concentration in pH 6.0 buffer. After adding excess strong acid (0.1 M HCl) to each solution of DOTA-metal was formed at pH 6.0, no released DOTA was detected after 24 h; thus, dissociation of these lanthanide complexes did not occur under strongly acidic conditions. The Ln(DOTA)(-) species for the four DOTA-metal complexes were characterized by electrospray ionization-mass spectroscopy (ESI-MS), and the results correlated with proposed structures.  相似文献   

4.
The stability constants of the 1:1 complexes formed between Pb2+ and the nucleosides (Ns), adenosine and guanosine, as well as between the nucleotides (NMP2-), AMP2-, IMP2-, and GMP2-, were determined by potentiometric pH titrations in aqueous solution (25 degrees C; I = 0.1 M, NaNO3). Based on previously established log KPb(R-PO3)Pb versus pKH(R-PO3)H straight-line plots (R-PO3(2-) = simple phosphate monoester or phosphonate ligands where R is a noninteracting site), it is shown that the Pb(IMP) and Pb(GMP) complexes are more stable than is expected on the basis of the basicity of the phosphate group of IMP2- and GMP2-. This means that macrochelates are formed, where the phosphate-coordinated Pb2+ also interacts with N7 of the nucleobase residue. In contrast, the stability of the Pb(AMP) complex is governed by the basicity of the AMP2- phosphate group. These results agree with the observations made for the Pb(Ns)2+ complexes: Pb(adenosine)2+ is very unstable in contrast to Pb(guanosine)2+, the stability of which is very similar to the one of Pb(cytidine)2+ studied previously. The stability constants of the Pb(Ns)2+ complexes also allowed an evaluation of the structure in solution of the monoprotonated Pb(H;NMP)+ complexes, the stabilities of which were also determined. We were able to show that the proton is located at the phosphate group and Pb2+ at the N7/(C6)O site of H(GMP)-; in the case of H(AMP)- Pb2+ is probably about equally distributed between the adenine residue and the monoprotonated phosphate group. On the basis of the stability constants of these complexes and their structures in solution, it is possible to provide a series which reflects the decreasing affinity for Pb2+ of nucleobase residues in single-stranded nucleic acids: guanine approximately equal to cytosine > (hypoxanthine) > adenine > uracil approximately equal to thymine. The Pb2+ affinity of the phosphodiester linkage, -PO3(-)-, is similar to the one of the adenine residue, but is expected to be more significant due to its larger abundance. The relevance of these results for lead-activated ribozymes is briefly discussed.  相似文献   

5.
Abstract— The quenching constant for the iodide quenching of the fluorescence of riboflavin phosphate was measured at pH 5 and at pH 8. The value of the constant at the lower pH (where the phosphate group is unionized), k' = 23 M-1 was independent of the ionic strength, μ. The ratio k"/k'= f(k" the quenching constant at pH 8, where the phosphate group carries a single negative charge) was found to be 0.70 at μ=0.025 and 0.79 at μ= 0.045. The fact that f < 1 is interpreted as due to electrostatic repulsion between the dye molecule, when ionized, and the iodide ion. Due to counter ion screening the effect is less accentuated at higher μ. The quenching constant for riboflavin (which does not contain the ionizable phosphate group) was found to have the same value, 30 M-1 both at pH 5 and at pH 8, and with no dependence on μ.  相似文献   

6.
The interaction between divalent metal ions and nucleic acids is well known, yet knowledge about the strength of binding of labile metal ions at the various sites is very scarce. We have therefore studied the stabilities of complexes formed between the nucleic acid model d(pGpG) and the essential metal ions Mg2+ and Zn2+ as well as with the generally toxic ions Cd2+ and Pb2+ by potentiometric pH titrations; all four ions are of relevance in ribozyme chemistry. A comparison of the present results with earlier data obtained for M(pUpU)- complexes allows the conclusion that phosphate-bound Mg2+ and Cd2+ form macrochelates by interaction with N7, whereas the also phosphate-coordinated Pb2+ forms a 10-membered chelate with the neighboring phosphate diester bridge. Zn2+ forms both types of chelates with formation degrees of about 91% and 2.4% for Zn[d(pGpG)]cl/N7 and Zn[d(pGpG)]-cl/PO, respectively; the open form with Zn2+ bound only to the terminal phosphate group, Zn[d(pGpG)]-op, amounts to about 6.8 %. The various intramolecular equilibria have also been quantified for the other metal ions. Zn2+, Cu2+, and Cd2+ also form macrochelates in the monoprotonated M[H;d(pGpG)] species (the proton being at the terminal phosphate group), that is, the metal ion at N7 interacts to some extent with the P(O)2(OH)- group. Thus, this study demonstrates that the coordinating properties of the various metal ions toward a pGpG unit in a nucleic acid differ: Mg2+, Zn2+, and Cd2+ have a significant tendency to bridge the distance between N7 and the phosphate group of a (d)GMP unit, although to various extents, whereas Pb2+ (and possibly Ca2+) prefer a pure phosphate coordination.  相似文献   

7.
The complexation between lanthanide metal ions like Nd(III), Tb(III), and Er(III) with Glimepiride produces 1: 1 molar ratio (metal: Glimepiride) monodentate complexes of general formula: [M(GMP)(H2O)4]Cl3·xH2O, where: M = Nd, Tb, and Er, x = 1, 10, respectively. The structures of obtained compounds were assigned by IR, 1H NMR and UV/Vis spectra. Themogravimetric analysis and kinetic thermodynamic parameters have proved the thermal stability of Glimepiride complexes. Obtained lanthanide complexes showed significant effect against some bacteria and fungi.  相似文献   

8.
Complexation of europium(III) with glyceryl-1- and -2-phosphates has been studied by metal ion luminescence, 1H and 13C NMR spectroscopy and potentiometry. From the luminescence and NMR studies, the formation of a 1:1 inner-sphere complex, in which the glyceryl phosphate is directly bound to the metal, is confirmed. Similar apparent binding constants at pH 2 were obtained by the three methods. Values obtained by NMR at pH 2 are 53 M−1 and 12 M−1 for glyceryl-1- and -2-phosphate, respectively. By comparison with literature data on related systems it is suggested that the ligands bind through the phosphate group. To obtain structural information from the NMR data, complexation has also been studied with the lanthanide ions Dy(III), Er(III) and Gd(III) using both chemical shift and relaxation data. From this, metal-proton distance ratios have been calculated. Comparison of 1H and 13C NMR spectral data in the presence of paramagnetic lanthanides suggests conformational equilibria in the solutions. From the potentiometric studies, global formation constants have been determined, and speciation diagrams obtained over the pH range 1.5pH7.0 for ligand/metal ratios of 1 and 30. Implications of these results on lanthanide induced fusion of phospholipid membranes are discussed.  相似文献   

9.
The Zr(IV)-tetraphenylpor-phyrinates Zr(TPP)(X,X'), (X,X' = -OAc, -OMe, Cl ) 4-6, 8 were prepared and their complexing properties as well as catalytic properties towards solvolysis of the phosphate diesters hpp (2), dmp (3) and pmp (16) characterised. The diesters 2 and 16, representing model phosphates for RNA and DNA, were substrates for the catalyst Zr(TPP)Cl2 (4), and rate accelerations over background by 6-9 orders of magnitude were measured. These accelerations are comparable to those of dinuclear transition metal catalysts and lanthanide ions. Catalytic turnover was observed. Kinetic studies revealed that the catalytically active species of 4 in the solvolysis of 2 and 16 in methanol-containing solvents are dinuclear complexes containing either one or two phosphate esters depending upon the phosphate concentration. Besides the usual solvolysis pathway of the RNA model hpp (2), which proceeds via the cyclophosphate 20, a second, unusual pathway via direct substitution of the hydroxypropyl substituent was found. X-ray analysis of the Zr(TPP)(dmp) complex 19 revealed a dinuclear structure with two bridging dmp ligands and one monomethyl phosphate unit. In 19 one of the two dmp residues occurs in a very unusual high energy ac,ap conformation. Based on this structure and on the kinetic data, mechanistic models for the two solvolysis reaction pathways were developed. From an extensive CSD search on phosphodiester structures no correlation between P-O ester bond lengths and diester conformations could be found. However, P-O ester bonds decrease in length with increasing formal charge of the complexing metal ions. This underlines the higher importance of electrostatic activation relative to stereoelectronic effects in phosphodiester hydrolysis.  相似文献   

10.
The range of properties available in the lanthanide series has inspired research into the use of lanthanide nanoparticles for numerous applications. We aim to use NaLnF(4) nanoparticles for isotopic tags in mass cytometry. This application requires nanoparticles of narrow size distribution, diameters preferably less than 15 nm, and robust surface chemistry to avoid nonspecific interactions and to facilitate bioconjugation. Nanoparticles (NaHoF(4), NaEuF(4), NaGdF(4), and NaTbF(4)) were synthesized with diameters from 9 to 11 nm with oleic acid surface stabilization. The surface ligands were replaced by a series of mono-, di-, and tetraphosphonate PEG ligands, whose synthesis is reported here. The colloidal stability of the resulting particles was monitored over a range of pH values and in phosphate containing solutions. All of the PEG-phosphonate ligands were found to produce non-aggregated colloidally stable suspensions of the nanoparticles in water as judged by DLS and TEM measurements. However, in more aggressive solutions, at high pH and in phosphate buffers, the mono- and diphosphonate PEG ligands did not stabilize the particles and aggregation as well as flocculation was observed. However, the tetraphosphonate ligand was able to stabilize the particles at high pH and in phosphate buffers for extended periods of time.  相似文献   

11.
A series of lanthanide(III) complexes formulated as M[Ln(Hdo3ap)].xH(2)O (M = Li or H and Ln = Tb, Dy, Er, Lu, and Y) with the monophosphonate analogue of H(4)dota, 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic-10-methylphosphonic acid (H(5)do3ap), was prepared in the solid state and studied using X-ray crystallography. All of the structures show that the (Hdo3ap)(4-) anion is octadentate coordinated to a lanthanide(III) ion similarly to the other H(4)dota-like ligands, i.e., forming O(4) and N(4) planes that are parallel and have mutual angle smaller than 3 degrees . The lanthanide(III) ions lie between these planes, closer to the O(4) base than to the N(4) plane. All of the structures present the lanthanide(III) complexes in their twisted-square-antiprismatic (TSA) configuration. Twist angles of the pendants vary in the range between -24 and -30 degrees, and for each complex, they lie in a very narrow region of 1 degree. The coordinated phosphonate oxygen is located slightly above (0.02-0.19 Angstroms) the O(3) plane formed with the coordinated acetates. A water molecule was found to be coordinated only in the terbium(III) and neodymium(III) complexes. The bond distance Tb-O(w) is unusually long (2.678 Angstroms). The O-Ln-O angles decrease from 140 degrees [Nd(III)] to 121 degrees [Lu(III)], thus confirming the increasing steric crowding around the water binding site. A comparison of a number of structures of Ln(III) complexes with DOTA-like ligands shows that the TSA arrangement is flexible. On the other hand, the SA arrangement is rigid, and the derived structural parameters are almost identical for different ligands and lanthanide(III) ions.  相似文献   

12.
A novel polysilsesquioxane bridge (PPSSi) is synthesized with methylene group modification of phenylphenacyl sulfoxide by isocyanate group from 3-(triethoxysilyl)propyl isocyanate (TEPIC). Then ternary lanthanide (Eu, Tb) hybrids of polysilsesquioxane bridge (PPSSi) and four kinds of polymer chain (polyacrylamide (PAM), polyvinylpyrrolidone (PVP), polymethyl methacrylate (PMMA) and polyethyl methacrylate (PEMA) were assembled wth coordination bonding. To explore the influence of the different polymeric chains on the properties of lanthanide hybrids, the microstructure and photoluminescent properties of these lanthanide coordination polymer hybrids (PPSSi-Ln-PAM (PVP, PMMA, PEMA)) are compared in detail. Four organic polymer chains with different structures not only can coordinate to the lanthanide ions by their own carbonyl groups, but also can form a polymeric matrix together with the inorganic Si-O network. The results show that all the obtained hybrids could show efficient intramolecular energy transfer and lead to excellent characteristic emission of lanthanide ions. Moreover, the different structures of the polymers induce different microstructures and different photoluminescent behavior (lifetime and quantum efficiency) for these hybrid systems. The PPSSi-Ln-PMMA hybrid leads to the longest lifetime and highest quantum efficiency.  相似文献   

13.
14.
Lanthanide(III) hexanoate 1, 10‐phenanthroline complexes crystallise in the space group P21/n. The compounds consist of dimers, whereby two lanthanide ions are held together by two bidentate bridging and two tridentate bridging carboxylate groups. The first coordination sphere of the lanthanide ions is completed by one bidentate chelating carboxylate group and by one bidentate 1, 10‐phenanthroline molecule, resulting in the coordination number 9. The dimers have a spherical form, which has important consequences for the thermal properties of complexes. The basic idea behind the preparation of this type of compounds is the stabilisation of the ionic lanthanide layer, so that the smaller lanthanide ions (from which the normal alkanoates do not show mesomorphism because they are too small) show liquid crystallinity. The stabilisation of the ionic layer was successful, expressed by the high melting temperatures, but mesomorphism is not observed. The absence of mesomorphism is related to the isotropic structure of the compounds. A lower symmetry is obtained when a hexanoate group is replaced by a nitrate group. Thulium(III) dihexanoate nitrate 1, 10‐phenanthroline crystallises in the space group P1¯. However, this compound also shows a spherical dimeric structure, but no mesomorphism.  相似文献   

15.
The evolution of the geometric and electronic structures within the entire series of lanthanide orthophosphate nanoparticles ( approximately 2- approximately 5 nm) has been determined experimentally with X-ray diffraction and near edge X-ray absorption fine structure spectroscopy. In particular, the interplay between electronic structure, crystal morphology, and crystal phase has been systematically studied. A missing local order in the crystal structure accompanied by multiple ion sites in the nanoparticles was revealed to be due to the small crystal size and large surface contribution. All lanthanide ions were found to be in "3+" configuration and accommodated in three different crystallization states: the larger lanthanide ions (La, Ce, Pr, Nd, Sm) in the monoclinic phase, the smaller ones (Er, Tm, Yb, Lu) in the tetragonal phase, and the intermediate lanthanide ions (Eu, Gd, Tb, Dy, Ho) in a "mixed phase" between monoclinic and tetragonal phases.  相似文献   

16.
γ-Aminobutyrohydroxamate resin that simulate siderophore analogues was prepared. The structure and conversion of functional groups of the resin were confirmed with IR spectra and elemental analysis. The influence of pH on adsorption of metal ions to the resin was examined. Uptake of metal ions increased with pH and was quantitative in the pH range of 4 to 6 for most of the lanthanides. These metal ions showed high exchange rates towards the resin. The complexation behavior of the resin was also investigated by means of IR and potentiometry. The dissociation constant, pKa of the hydroxamic hydroxyl group is 9.36. Stability constants of the insoluble lanthanide complexes on the resins were measured potentiometrically at 25 ± 0.1 °C and ionic strength of 0.1 M KCl. The results were compared with those of the corresponding soluble lanthanide complexes. It was found that a higher stability of the resin resulted in an increase of the stability constants. The phenomena might be due to the length of the spacer in providing the proper geometry of the resin ligand for intramolecular metal complexation.  相似文献   

17.
A novel polymeric ligand exchanger (PLE) was prepared for the removal of phosphate ions from water. 2,2′-dipyridylamine (DPA), a bidentate ligand forming compound with high coordination capacity with a variety of metal ions was bound to glycidyl methacrylate (GMA) grafted polypropylene/polyethylene (PP/PE) nonwoven fabric synthesized by radiation-induced grafting technique. DPA attachment on epoxy ring of GMA units was tested in different solvents, i.e. methanol, ethanol, dioxane and dimethylsulfoxide (DMSO). The highest amount of modification was achieved in dioxane. In order to prepare the corresponding PLE for the removal of phosphate, DPA-immobilized fabric was loaded with Cu(II) ions. Phosphate adsorption experiments were performed in batch mode at different pH (5–9) and phosphate concentrations. The fabric was found to be effective for the removal of phosphate ions. At every stage of preparation and use, the nonwoven fabric was characterized by thermal (i.e. DSC and TGA) and spectroscopic (FTIR) methods. Competitive adsorption experiments were also carried out using two solutions with different concentration levels at pH 7 to see the effect of competing ions. Phosphate adsorption was found to be effective and selective from solutions having trace amounts of competitive anions. It is expected that the novel PLE synthesized can be used for the removal of phosphate ions in low concentrations over a large range of pH.  相似文献   

18.
Europium and Terbium were found to form ternary complexes with ethylenediammine tetraacetic acid (EDTA) and ortho-phenanthroline (o-phen) in aqueous solution in the pH range of 6-8. These ternary complexes were found to have 1:1:1 composition and showed strong fluorescence properties. The method is made use of for the determination of these lanthanide ions in presence of excess amounts of other lanthanide ions. The lowest detection limit was calculated as 30 and 65 ng/ml of Tb(3+) and Eu(3+), respectively.  相似文献   

19.
Yang L  Su Y  Xu Y  Wang Z  Guo Z  Weng S  Yan C  Zhang S  Wu J 《Inorganic chemistry》2003,42(19):5844-5856
The study of the sugar-metal ion interactions remains one of the main objectives of carbohydrate coordination chemistry because the interactions between metal ions and carbohydrates are involved in many biochemical processes. This paper presents a comparison of coordination structures of erythritol with alkaline-earth-metal and lanthanide chloride and nitrate in the solid state using FT-IR and X-ray diffraction. Neutral, nondeprotonated erythritol (E) reacts with CaCl(2) to give three CaCl(2)(-)erythritol (CaE(I), CaE(II), CaE(III)) complexes, showing that three of the five general features of calcium-carbohydrate complexes deduced in the reference encounter contrary examples. Different coordination structures have been observed for calcium and lanthanide chloride and nitrates. The coordination of carbohydrates to metal ions is complicated, and erythritol, chloride ions, nitrates, water molecules, and ethanol (crystallization medium and reaction solvents) have the chance to coordinate to metal ions. IR spectral results show that different lanthanide ions, from LaCl(3) to TbCl(3), have similar coordination structures with erythritol. The results show that erythritol can act as two bidentate neutral ligands (CaE(I), CaE(II), CaE(III), CaEN, PrE, NdE) or as a three-hydroxyl donor (NdEN). The IR results are consistent with the crystal structures.  相似文献   

20.
Thioflavin-T is one of the most important amyloid specific dyes and has been used for more than 50 years; however, the molecular mechanism of staining is still not understood. Chemically synthesized short polyglutamine peptides (Q(n), n = 5-10) were subjected to the thioflavin-T (ThT) staining assay. It was found that the minimum Q(n) peptide that stained positive to ThT was Q(6). Two types of ThT-binding sites, a high-affinity site (k(d1) = 0.1-0.17 μM) and a low-affinity site (k(d2) = 5.7-7.4 μM), were observed in short polyQs (n = 6-9). (13)C{(2)H}REDOR NMR experiments were carried out to extract the local structure of ThT binding sites in Q(8) peptide aggregates by observing the intermolecular dipolar coupling between [3-Me-d(3)]ThT and natural abundance Q(8) or residue-specific [1,2-(13)C(2)] labeled Q(8)s. (13)C{(2)H}REDOR difference spectra of the [3-Me-d(3)]ThT/natural abundance Q(8) (1/9) complex indicated that all of the five carbons of the glutamine residue participated in the formation of ThT-binding sites. (13)C{(2)H}DQF-REDOR experiments of [3-Me-d(3)]ThT/residue-specific [1,2-(13)C(2)] labeled Q(8) (1/50) complexes demonstrated that the N-terminal glutamine residue had direct contact with the ThT molecule at the high-affinity ThT-binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号