首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Template-synthesized DNA nanotubes   总被引:2,自引:0,他引:2  
There is considerable interest in DNA-functionalized nanotubes with proposed applications that include use as gene delivery vehicles, in DNA-assisted separation and assembly of carbon nanotubes, and in nanotube-based DNA sensing and separations. In all of these previous cases, the DNA molecules were attached to a nanotube composed of a second material, typically carbon; however, it might also be advantageous to have nanotubes composed entirely, or predominately, of DNA itself. We describe here a template synthesis method for preparing such DNA nanotubes. The synthetic strategy builds on prior work, where we used Mallouk's layer-by-layer alpha,omega-diorganophosphonate (alpha,omega-DOP) Zr(IV) chemistry to deposit layered alpha,omega-DOP/Zr(IV) nanotubes along the pore walls of an alumina template membrane. The DNA nanotubes described here have an outer skin of one or more of these alpha,omega-DOP/Zr(IV) layers, to provide structural integrity, surrounding an inner core of multiple double-stranded DNA layers held together by hybridization between the layers. The DNA molecules comprising these nanotubes can be varied at will, and the DNA can be released from the nanotube by melting of the DNA duplexes comprising the nanotubes.  相似文献   

2.
Aqueous suspensions of hydrothermally synthesized titanate nanotubes and poly(diallyldimethylammonium chloride) (PDDA) have been employed to fabricate multilayer films on various substrates in a layer-by-layer fashion. Atomic force microscopy displays the dense coverage of the substrate surface by the nanotubes. UV-vis absorption spectroscopy confirms the consecutive growth of PDDA/nanotube layer pairs. Single crystalline Ag and Au nanoparticles with narrow size distribution spatially correlating with the nanotubes have been obtained by treating the nanotubes with AgNO(3) or HAuCl(4) aqueous solution followed by chemical reduction. The noble metal nanoparticles show a strong surface plasmon absorption band. A multilayer film construction of the noble-metal-loaded nanotubes has also been achieved. This process has been further extended to the heteroassembly of nanotubes/nanosheets in different layer sequences.  相似文献   

3.
Synthesis of alumina nanotubes using carbon nanotubes as templates   总被引:6,自引:0,他引:6  
Alumina nanotubes have been fabricated using carbon nanotubes (CNTs) as templates at 1473 K. The Al2O3 nanotubes are polycrystals. They are less than 100 nm in outer diameter and tens of nanometer in inner diameter, which is close to the outer diameters of the templates. Under certain conditions, AlN and Al2O3 nanowires can also be fabricated in this reaction system. Discussions on the growth mechanisms of these nanotubes and nanowires are presented.  相似文献   

4.
Carbon nanotubes are composed of cylindrical graphite sheets. Both nanotubes and graphite sheets are benzenoid derivatives composed of sp2 carbon atoms arranged in a hexagonal pattern. Therefore both systems are aromatic. The extent of the aromatic character of a molecule G (here benzenoids) can be explained in terms of the number of possible Kekulé structures in G. In this work the Kekulé structures in carbon nanotubes and the corresponding, rectangular, graphite-sheets the tubes might originate from, were enumerated. It was shown that (2,2), (3,3), and (4,4) carbon nanotubes are more aromatic than the corresponding, rectangular, planar structures. This explains why it might be more difficult to saturate nanotubes by addition reactions than the respective, "narrow", graphite sheets.  相似文献   

5.
Polyaniline (PANI) nanotubes were prepared by the oxidation of aniline in solutions of acetic or succinic acid, and subsequently carbonized in a nitrogen atmosphere during thermogravimetric analysis running up to 830 °C. The nanotubular morphology of PANI was preserved after carbonization. The molecular structure of the original PANI and of the carbonized products has been analyzed by FTIR and Raman spectroscopies. Carbonized PANI nanotubes contained about 8 wt.% of nitrogen. The molecular structure, thermal stability, and morphology of carbonized PANI nanotubes were compared with the properties of commercial multi-walled carbon nanotubes.  相似文献   

6.
Heterostructured magnetic nanotubes   总被引:1,自引:0,他引:1  
Heterostructured magnetic tubes with submicrometer dimensions were assembled by the layer-by-layer deposition of polyelectrolytes and nanoparticles in the pores of track-etched polycarbonate membranes. Multilayers composed of poly(allylamine hydrochloride) and poly(styrene sulfonate) assembled at high pH (pH > 9.0) were first assembled into the pores of track-etched polycarbonate membranes, and then multilayers of magnetite (Fe3O4) nanoparticles and PAH were deposited. Transmission electron microscopy (TEM) confirmed the formation of multilayer nanotubes with an inner shell of magnetite nanoparticles. These tubes exhibited superparamagnetic characteristics at room temperature (300 K) as determined by a SQUID magnetometer. The surface of the magnetic nanotubes could be further functionalized by adsorbing poly(ethylene oxide)-b-poly(methacrylic acid) block copolymers. The separation and release behavior of low molecular weight anionic molecules (i.e., ibuprofen, rose bengal, and acid red 8) by/from the multilayer nanotubes were studied because these tubes could potentially be used as separation or targeted delivery vehicles. The magnetic tubes could be successfully used to separate (or remove) a high concentration of dye molecules (i.e., rose bengal) from solution by activating the nanotubes in acidic solution. The release of the anionic molecules in physiologically relevant buffer solution showed that whereas bulky molecules (e.g., rose bengal) release slowly, small molecules (i.e., ibuprofen) release rapidly from the multilayers. The combination of the template method and layer-by-layer deposition of polyelectrolytes and nanoparticles provides a versatile means to create functional nanotubes with heterostructures that can be used for separation as well as targeted delivery.  相似文献   

7.
In this paper, ice nanotubes confined in carbon nanotubes are investigated by molecular dynamics. The trigonal, square, pentagonal, and hexagonal water tubes are obtained, respectively. The current-voltage (I-V) curves of water nanotubes are found to be nonlinear, and fluctuations of conductance spectra of these ice nanotubes show that the transport properties of ice nanotubes are quite different from those of bulk materials. Our studies indicate that the conductance gap of ice nanotube is related to the difference value from the Fermi energy EF to the nearest molecular energy level E0. Increasing the diameter of a water molecular nanostructure results in the increase of the conductance.  相似文献   

8.
Indium phosphide (InP) nanotubes have been synthesized via the vapor-liquid-solid (VLS) growth mechanism. The nanotubes are crystalline and have the (bulk) zinc blende structure and therefore represent a new class of tube materials. The tubes show photoluminescence, which is considerably blue-shifted with respect to bulk emission, indicating that the optical properties are not dominated by defect states. They are formed at higher temperatures than those at which nanowires are fabricated. A simple model for the formation of the nanotubes is presented. The wall thickness can be controlled by the synthesis temperature and is in the range of 2-20 nm.  相似文献   

9.
Functionalized carbon nanotubes containing isocyanate groups can extend the nanotube chemistry, and may promote their many potential applications such as in polymer composites and coatings. This paper describes a facile method to prepare functionalized carbon nanotubes containing highly reactive isocyanate groups on its surface via the reaction between toluene 2,4-diisocyanate and carboxylated carbon nanotubes. Fourier-transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed that reactive isocyanate groups were covalently attached to carbon nanotubes. The content of isocyanate groups were determined by chemical titration and thermogravimetric analysis (TGA).  相似文献   

10.
A room-temperature, open-air method is devised to selectively intercalate relatively low-molecular-weight polymers (approximately 10-100 kDa) from dilute, volatile solutions into open-end, as-grown, wettable carbon nanotubes with 50-100 nm diameters. The method relies on a novel self-sustained diffusion mechanism driving polymers from dilute volatile solutions into carbon nanotubes and concentrating them there. Relatively low-molecular-weight polymers, such as poly(ethylene oxide) (PEO, 600 kDa) and poly(caprolactone) (PCL, 80 kDa), were encapsulated in graphitic nanotubes as confirmed by transmission electron microscopy, which revealed morphologies characteristic of mixtures in nanoconfinements affected by intermolecular forces. Whereas relatively small, flexible polymer molecules can conform to enter these nanotubes, larger macromolecules (approximately 1000 kDa) remain outside. The selective nature of this process is useful for filling nanotubes with polymers and could also be valuable in capping nanotubes.  相似文献   

11.
The potential energies of interaction between carbon nanotubes and internal fullerenes of spherical and ellipsoidal shape, as well as between nanotubes in multi-walled nanotubes were calculated using the Lennard–Jones (LJ) potential for carbon–carbon interactions. The optimum and maximum size of internal fullerenes and multi-walled nanotubes are determined as a function of the external nanotube radius. It was found that at the potential energy minimum, the van der Waals distance is close to that in graphite for all studied cases. The calculated results agree with available experimental observations and could be used as a guide for future experiments.  相似文献   

12.
Because of their unique properties, carbon nanotubes and, in particular, multiwalled carbon nanotubes (MWNTs) have been used for the development of advanced composite and catalyst materials. Despite their growing commercial applications and increased production, the potential environmental and toxicological impacts of MWNTs are not fully understood; however, many reports suggest that they may be toxic. Therefore, a need exists to develop protocols for effective and safe degradation of MWNTs. In this article, we investigated the effect of chemical functionalization of MWNTs on their enzymatic degradation with horseradish peroxidase (HRP) and hydrogen peroxide (H(2)O(2)). We investigated HRP/H(2)O(2) degradation of purified, oxidized, and nitrogen-doped MWNTs and proposed a layer-by-layer degradation mechanism of nanotubes facilitated by side wall defects. These results provide a better understanding of the interaction between HRP and carbon nanotubes and suggest an eco-friendly way of mitigating the environmental impact of nanotubes.  相似文献   

13.
This report describes the synthesis and enzyme activities of multilayered protein nanotubes with an α-glucosidase (αGluD) interior surface. The nanotubes were prepared by using an alternating layer-by-layer (LbL) assembly of human serum albumin (HSA) and oppositely charged poly-L-arginine (PLA) into a track-etched polycarbonate (PC) membrane (pore size=400 nm) followed by addition of αGluD as the last layer of the wall. Subsequent dissolution of the PC template yielded (PLA/HSA)(2)PLA/αGluD nanotubes. SEM measurements revealed the formation of uniform hollow cylinders with (413±17) nm outer diameter and (52±3) nm wall thickness. In aqueous media, the nanotubes captured a fluorogenic glucopyranoside, 4-methyl-umbelliferyl-α-D-glucopyranoside (MUGlc), into their one-dimensional pore space and hydrolyzed the substrate efficiently to form α-D-glucose. We determined the enzyme parameters (Michaelis constant, K(M), and catalytic constant, k(cat), values) of the protein nanotubes. The several-micrometers-long cylinders were of sufficient length to be spun down by centrifugation at 4000 g, so the product could therefore be easily separated. Similar biocatalysts were prepared by complexation of biotinylated-αGluD into HSA-based nanotubes bearing a single avidin layer as an internal surface. The obtained hybrid nanotubes also exhibited the same enzyme activity for the MUGlc hydrolysis.  相似文献   

14.
The shock-wave resistance of WS(2) nanotubes has been studied and compared to that of carbon nanotubes. Detailed structural features of post-shock samples were investigated using HRTEM, XRD, and Raman spectroscopy. WS(2) nanotubes are capable of withstanding shear stress caused by shock waves of up to 21 GPa, although some nanotube tips and nanoparticles containing multiple structural defects in the bending regions are destroyed. Small WS(2) species, consisting of only a few layers, are extruded from the nanotubes. Well-crystallized tube bodies were found to exhibit significant stability under shock, indicating high tensile strength. XRD and Raman analyses have confirmed this structural stability. Under similar shock conditions, WS(2) tubes are more stable than carbon nanotubes, the latter being transformed into a diamond phase. WS(2) nanotubes containing small concentrations of defects possess significantly higher mechanical strength, and, as a consequence, hollow WS(2) nanoparticles are expected to act as excellent lubricants under much higher loading than was previously thought.  相似文献   

15.
Carbon nanotubes have attracted great interdisciplinary interest because of their unique structure and properties. However, carbon-nanotube research is challenged by several problems, such as: i) mass production of material, ii) control of length, diameter, and chirality, and iii) manipulation for use in diverse technological fields. Issues regarding the synthesis and purification as well as the functionalization and solubilization of carbon nanotubes are relevant topics in this rapidly growing field. In this paper, covalent and noncovalent approaches to functionalized and solubilized nanotubes are examined in detail, with particular emphasis on the change of properties that accompany the chemical modification.  相似文献   

16.
Single-crystal beta-MnO(2) nanotubes with diameters in the range 200-500 nm and lengths up to several micrometers were successfully prepared by a simple hydrothermal method through oxidizing MnSO(4) with NaClO(3) in the presence of poly(vinyl pyrrolidone) (PVP). It was found that the formation process of beta-MnO(2) nanotubes included two primary evolution stages over time: (1) the MnOOH nanoparticles initially formed in the hydrothermal system and anisotropic growth to nanorods and nanorod aggregates, and (2) the MnOOH nanorods transformed into beta-MnO(2) tubular structure and grown into beta-MnO(2) nanotubes due to continuous growth through a dissolution-recrystallization process eventually. Based on a series of experimental analysis, the formation mechanism of these nanostructures was discussed briefly. The present study has enlarged the family of nanotubes available and offers a possible new, general route to one-dimensional single-crystalline nanotubes of other materials.  相似文献   

17.
An AlN nanotube (AlNNT) was theoretically predicted in 2003. In comparison with the carbon nanotubes, the AlNNTs are wide-band-gap nanostructures with high reactivity, high thermal stability and sharp electronic sensitivity toward some chemicals. The B3LYP predicts an HOMO–LUMO gap of 3.74–4.27 eV for zigzag AlNNTs, while the experimental bad gap of bulk AlN is about 6.28 eV. The lowest strain energy of AlNNTs relative to its AlN nanosheet compared to the nanosheets of carbon and BN nanotubes with an equivalent diameter suggests the feasibility of AlNNT synthesis from its nanosheet. Theoretical methods predict a Young’s Modulus of about 453 GPa for AlNNTs that is smaller than that of carbon (1 TPa), BN (870 GPa) and GaN (796 GPa) nanotubes. In 2003, the faceted single-crystalline hexagonal AlNNTs were synthesized and extensively explored by means of density functional theory calculations. Several works have suggested different potential applications for AlNNTs including chemical sensors, hydrogen storage, gas adsorbent, and electron field emitter. This review is a comprehensive study on the latest achievements in the structural analyses, synthesis, and property evaluations based on the computational methods on the AlNNTs in the light of the development of nanotubes.  相似文献   

18.
A quantum-mechanical ab initio method, with inclusion of spin–orbit coupling, has been suggested for the calculation of the electronic structure of carbon chains (carbynes) and nanotubes. Consideration of spin–orbit coupling leads to the formation of spin–orbit gaps with a width of 2–3 meV in carbynes and up to 1 meV in nanotubes, as well as to spin polarization in chiral nanotubes.  相似文献   

19.
The unique physical and electrical properties of carbon nanotubes make them an exciting material for applications in various fields such as bioelectronics and biosensing. Due to the poor water solubility of carbon nanotubes, functionalization for such applications has been a challenge. Of particular need are functionalization methods for integrating carbon nanotubes with biomolecules and constructing novel hybrid nanostructures for bionanoelectronic applications. We present a novel method for the fabrication of dispersible, biocompatible carbon nanotube-based materials. Multiwalled carbon nanotubes (MWCNTs) are covalently modified with primary amine-bearing phospholipids in a carbodiimide-activated reaction. These modified carbon nanotubes have good dispersibility in nonpolar solvents. Fourier transform infrared (FTIR) spectroscopy shows peaks attributable to the formation of amide bonds between lipids and the nanotube surface. Simple sonication of lipid-modified nanotubes with other lipid molecules leads to the formation of a uniform lipid bilayer coating the nanotubes. These bilayer-coated nanotubes are highly dispersible and stable in aqueous solution. Confocal fluorescence microscopy shows labeled lipids on the surface of bilayer-modified nanotubes. Transmission electron microscopy (TEM) shows the morphology of dispersed bilayer-coated MWCNTs. Fluorescence quenching of lipid-coated MWCNTs confirms the bilayer configuration of the lipids on the nanotube surface, and fluorescence anisotropy measurements show that the bilayer is fluid above the gel-to-liquid transition temperature. The membrane protein α-hemolysin spontaneously inserts into the MWCNT-supported bilayer, confirming the biomimetic membrane structure. These biomimetic nanostructures are a promising platform for the integration of carbon nanotube-based materials with biomolecules.  相似文献   

20.
Chen X  Sun X  Li Y 《Inorganic chemistry》2002,41(17):4524-4530
Vanadium oxide nanotubes were synthesized as the main product by hydrothermal self-assembling from ammonium metavanadate (NH(4)VO(3)) and organic molecules as structure-directing templates. Several kinds of templates including primary amines (C(n)H(2n+1)NH(2)), alpha,omega-diamines (H(2)N[CH(2)](n)NH(2)), and quaternary ammonium salt (CTAB) were demonstrated to be appropriate for the formation of nanotubes. The morphologies and structures of the nanotubes were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and thermal gravimetric analysis (TGA). The nanotubes were found forming together with the layered structures and the sheetlike structures. On the basis of the growth mechanism of WS(2) nanotubes proposed by our group, a possible rolling mechanism was proposed, which might be a suitable general formation mechanism for types of nanotubes from lamellar structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号