首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesoporous carbons with highly uniform and tunable mesopores were fabricated by one-step vapor deposition polymerization (VDP) using colloidal silica particles as templates and polyacrylonitrile (PAN) as a carbon precursor.  相似文献   

2.
Summary Bimetallic (Fe-Co) catalyst samples prepared from different precursors over various supports were tested in carbon nanotube (CNT) production. In order to quicken the evaluation of the performance of the catalysts a combinatorial arrangement was used.</o:p>  相似文献   

3.
Double-wall carbon nanotubes (DWNTs) have been selectively synthesized over Fe/Co loaded mesoporous silica by catalytic chemical vapor deposition of alcohol. Several silica materials with desired pore diameter and morphology have been investigated for the DWNT growth. The diameter distribution and selectivity of the DWNT are found to depend on the reaction temperature, pore size, and thermal stability of the support material. A high-yield synthesis of DWNTs has been achieved at 900 degrees C over high-temperature stable mesoporous silica. The outer diameter of DWNTs is found to be in the range of 1.5-5.4 nm with a "d" spacing of 0.38 +/- 0.02 nm between inner and outer layers, which is much larger than those of multiwall carbon nanotubes.  相似文献   

4.
High-quality single-wall carbon nanotubes (SWNTs) with narrow diameter distribution have been grown on Fe/Co-loaded MCM41 by using acetylene as the carbon source within a short reaction period, typically 10 min or less. The optimum temperature for SWNTs synthesis is 850 degrees C. Longer reaction time (i.e., 30 min) favors the formation of multiwall carbon nanotubes (MWNTs) and graphitic carbon. When the reaction time is reduced to less than 10 min, formation of MWNTs and graphitic carbon is greatly suppressed, and high-quality SWNTs dominates the yield. The surface of the as-grown SWNTs is found to be free from amorphous carbon, as observed from high-resolution transmission electron microscope (HRTEM) analysis. Raman spectral data show a G/D ratio above 10, indicating that the as-grown SWNTs have very few defects. Furthermore, radial breathing mode (RBM) analysis reveals that the diameter distribution of the current SWNTs is narrow and ranges from 0.64 to 1.36 nm.  相似文献   

5.
Double-walled carbon nanotubes (DWNTs) have been synthesized by catalytic chemical vapor deposition (CCVD) over supported metal catalysts decomposed from Fe(CH3COO)2 and Co(CH3COO)2 on mesoporous silica. Bundles of tubes with relatively high percentage of DWNTs, in areas where tubular layered structures could be clearly resolved, have been observed by transmission electron microscopy (TEM). In other areas, crystal-like alignment of very uniform DWNTs was observed for the first time, suggesting that mesoporous silica might play a templating role in guiding the initial nanotube growth. In addition, compatible with nano-electronics research, bridging of catalytic islands by DWNTs has also been demonstrated.  相似文献   

6.
Polypyrrole (PPy) nanotubes have been fabricated by reverse microemulsion polymerization in an apolar solvent, and factors affecting the formation of PPy nanotubes have also been investigated.  相似文献   

7.
A magnetism-assisted chemical vapor deposition method was developed to synthesize branched or iron-encapsulated carbon nanotubes. In the process, the external magnetic field can promote the coalescence or division of the catalyst particles, causing the formation of branched or encapsulated nanostructures. This finding will extend the understanding of the chemical vapor deposition method in a magnetic field and promote the applications of branched or encapsulated nanostructures.  相似文献   

8.
Polymer decoration on carbon nanotubes via physical vapor deposition   总被引:2,自引:0,他引:2  
The polymer decoration technique has been widely used to study the chain folding behavior of polymer single crystals. In this article, we demonstrate that this method can be successfully adopted to pattern a variety of polymers on carbon nanotubes (CNTs). The resulting structure is a two-dimensional nanohybrid shish kebab (2D NHSK), wherein the CNT forms the shish and the polymer crystals form the kebabs. 2D NHSKs consisting of CNTs and polymers such as polyethylene, nylon 66, polyvinylidene fluoride and poly(L-lysine) have been achieved. Transmission electron microscopy and atomic force microscopy were used to study the nanoscale morphology of these hybrid materials. Relatively periodic decoration of polymers on both single-walled and multi-walled CNTs was observed. It is envisaged that this unique method offers a facile means to achieve patterned CNTs for nanodevice applications.  相似文献   

9.
Single-walled carbon nanotubes possess unique properties that make them a potentially ideal material for chemical sensing. However, their extremely small size also presents technical challenges for realizing a practical sensor technology. In this tutorial review we explore the transduction physics by which the presence of molecular adsorbates is converted into a measurable electronic signal, and we identify solutions to the problems such as nanotube device fabrication and large, low-frequency noise that have inhibited commercial sensor development. Finally, we examine strategies to provide the necessary chemical specificity to realize a nanotube-based detection system for trace-level chemical vapor detection.  相似文献   

10.
It was found that the diameter distribution of single-walled carbon nanotubes (SWNTs) grown by the chemical vapor deposition (CVD) method could be controlled by the carbon feeding rate at the growth stage. A unified hypothesis on the relationship between nanoparticle size, growth condition, growth temperature, and diameter of the resulting nanotubes was developed and used to explain the relationship. It was shown that the diameters of SWNTs can be controlled even when highly polydisperse nanoparticles were used as catalyst. Such control enabled us to synthesize uniform small-diameter SWNTs at low carbon feeding rates. Additionally, understanding of the important role of the carbon feeding rate can be used to explain the cause of low growth efficiency in most CVD processes. It would also help us to design methods to improve the growth efficiency of CVD growth of nanotubes.  相似文献   

11.
Method for obtaining carbon nanotubes by the method of chemical vapor deposition with varied amount of catalyst, reaction duration, and temperature is considered. The synthesis of carbon nanotubes with various mode parameters was experimentally studied. The quality of the carbon nanotubes was examined by Raman spectroscopy. It was found that the defectiveness of the carbon nanotubes depends on the synthesis parameters.  相似文献   

12.
Semiconducting single-walled carbon nanotubes (s-SWCNTs) with a mean diameter of 1.6 nm were synthesized on a large scale by using oxygen-assisted floating catalyst chemical vapor deposition. The oxygen introduced can selectively etch metallic SWCNTs in situ, while the sulfur growth promoter functions in promoting the growth of SWCNTs with a large diameter. The electronic properties of the SWCNTs were characterized by laser Raman spectroscopy, absorption spectroscopy, and field effect transistor measurements. It was found that the content of s-SWCNTs in the samples was highly sensitive to the amount of oxygen introduced. Under optimum synthesis conditions, enriched s-SWCNTs can be obtained in milligram quantities per batch.  相似文献   

13.
Using a shielded growth approach and N2-annealed, nearly monodispersed Fe2O3 nanoparticles synthesized by interdendritic stabilization of Fe3+ species within fourth-generation poly(amidoamine) dendrimers, carbon nanotubes and nanofibers were successfully grown at low substrate temperatures (200-400 degrees C) by microwave plasma-enhanced chemical vapor deposition.  相似文献   

14.
Preferential growth of pure single-walled carbon nanotubes (SWNTs) over multi-walled carbon nanotubes (MWNTs) was demonstrated at low temperature by water plasma chemical vapor deposition. Water plasma lowered the growth temperature down to 450 degrees C, and the grown nanotubes were single-walled without carbonaceous impurities and MWNTs. The preferential growth of pure SWNTs over MWNTs was proven with micro-Raman spectroscopy, high-resolution transmission electron microscopy, and electrical characterization of the grown nanotube networks.  相似文献   

15.
We report a simple and efficient chemical vapor deposition (CVD) process that can grow oriented and long single-walled carbon nanotubes (SWNTs) using a cobalt ultrathin film ( approximately 1 nm) as the catalyst and ethanol as carbon feedstock. In the process, millimeter- to centimeter-long, oriented and high-quality SWNTs can grow horizontally on various flat substrate surfaces, traverse slits as large as hundreds of micrometers wide, or grow over vertical barriers as high as 20 microm. Such observations demonstrate that the carbon nanotubes are suspended in the gas flow during the growth. The trace amount of self-contained water (0.2-5 wt %) in ethanol may act as a mild oxidizer to clean the nanotubes and to elongate the lifetime of the catalysts, but no yield improvement was observed at the CVD temperature of 850 degrees C. We found that tilting the substrates supporting the Co ultrathin film catalysts can grow more, longer carbon nanotubes. A mechanism is discussed for the growth of long SWNTs.  相似文献   

16.
Polyaniline (PANI) nanotubes were prepared by the oxidation of aniline in solutions of acetic or succinic acid, and subsequently carbonized in a nitrogen atmosphere during thermogravimetric analysis running up to 830 °C. The nanotubular morphology of PANI was preserved after carbonization. The molecular structure of the original PANI and of the carbonized products has been analyzed by FTIR and Raman spectroscopies. Carbonized PANI nanotubes contained about 8 wt.% of nitrogen. The molecular structure, thermal stability, and morphology of carbonized PANI nanotubes were compared with the properties of commercial multi-walled carbon nanotubes.  相似文献   

17.
A temperature window of single-walled carbon nanotubes (SWCNTs) growth has been studied by Raman spectroscopy. The results presented when temperature lower than 750 degrees C, there were few SWCNTs formed, and when temperature higher than 900 degrees C, mass amorphous carbons were formed in the SWCNTs bundles due to the self-decomposition of CH4. The temperature window of SWCNTs efficiently growth is between 800 and 900 degrees C, and the optimum growth temperature is about 850 degrees C. These results were supported by transmission electron microscope images of samples formed under different temperature. The temperature window is important for large-scale production of SWCNTs by catalytic chemical vapor deposition method.  相似文献   

18.
The preferential growth of single-walled carbon nanotubes (SWNTs) on silica spheres with various diameters was realized for the first time by chemical vapor deposition (CVD) of methane. SWNTs tend to wrap the silica spheres to form a new superstructure of uniform SWNT nanoclaws when the diameters of the silica spheres are larger than 400 nm. The SWNTs obtained on silica spheres have highly graphitic tubular walls as characterized by Raman spectroscopy and HRTEM. This is a new method to obtain tunable uniform elastic deformation of SWNTs, which may act as the model for the study about the effect of delocalized bending on the properties of SWNTs. In addition, the combination of SWNTs with monodispersed silica spheres could conveniently integrate SWNTs into photonic crystals.  相似文献   

19.
The present article demonstrates a simple, eco-friendly route for the fabrication of carbon nanotubes (CNTs) with different morphologies, including the fascinating bamboo-like structures without complex catalyst/support preparation procedures. A thermal chemical vapor deposition (CVD) technique that utilized natural pozzolan supports and a solid carbon source, that is, a mixture of camphor and ferrocene in a weight ratio of 20:1, was carried out at different temperatures where the ferrocene played also the role of catalyst. The pozzolan chemical composition and mineral identification were determined by energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. The morphology of the fabricated CNTs was studied via scanning and transmission electron microscopies (SEM and TEM). It was revealed that both conventional tubular and bamboo-like nanotubes grow at 750 °C while the bamboo-like morphology prevails at 850 °C. The better nanostructure uniformity at higher deposition temperature was accompanied by an improved nanotube graphitization degree that was verified by Raman spectroscopy. Yet, the reduction of the CNTs production yield was recorded by thermogravimetric analysis (TGA). The experimental data are interpreted and discussed as an interplay between the CNTs processing temperature, morphology and growth mechanism. Thus, the growth of either tubular or bamboo-like nanostructures is suggested to be ruled by the competitive surface and bulk diffusions of carbon onto and into the catalyst surface. The growth depends on the size of catalyst nanoparticles sintered at different temperatures. The favorable role of the pozzolan supporting materials in the formation of bamboo-like tubes is emphasized.  相似文献   

20.
Multiwalled carbon nanotubes were synthesized catalytically from ethylene in the presence of water vapor at transition metals of the iron subgroup. The structure of the obtained nanotubes was studied by transmission electron microscopy, high-resolution transmission electron microscopy, and Raman spectroscopy. It was shown that the highest yields of carbon nanotubes with diameters between 20 and 40 nm, lengths of more than 1 μm, and average diameter of 0.92 nm for the innermost tube were obtained at a nickel catalyst with a water vapor concentration of 0.32%. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 42, No. 4, pp. 227–230, July–August, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号