首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
The redistribution of the electronic polarization in deuterium atoms is analyzed theoretically and the various polarization moments are shown to influence the magnetic resonance signal of deuterium. The analysis gives expressions that relate the amplitudes of the magnetic resonance signals for various Zeemann sublevels of the D atom to the electronic and nuclear polarizations of these atoms and their nuclear alignment. Experimental data on the optical orientation and spin exchange in a D-Cs mixture are used to determine the electronic and nuclear orientation and nuclear alignment of the D atoms, which are found to be 〈S z〉=0.1, 〈I z〉=0.27, and 〈Q zz=0.027. Zh. Tekh. Fiz. 67, 22–26 (January 1997)  相似文献   

2.
The specific heat of a V3Si single crystal (T c=17 K, H c2=20 T) in magnetic fields up to 8 T isinvestigated experimentally for three orientations of the field relative to the crystallographic directions — H∥〈001〉, H∥〈110〉, and H∥〈111〉. Both the upper critical magnetic field and the specific heat of the mixed state are observed to depend on the orientation of the magnetic field relative to the crystallographic directions (anisotropy): The critical field reaches its maximum value and the specific heat its minimum value in a field along the 〈001〉 direction. The anisotropy scale in both phenomena increases as the magnetic field and reaches 3% in a 6 T field. The interrelationship of the upper critical field anisotropy and the specific-heat anisotropy in type-II superconductors is studied. It is shown that the anisotropy of the specific heat in the mixed state in weak fields can serve as a criterion for nontrivial pairing. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 1, 26–29 (10 January 1999)  相似文献   

3.
The NMR of 55Mn in the quasi-one-dimensional noncollinear anti-ferromagnet CsMnI3 is investigated at T=1.3 K in magnetic fields up to ∼80 kOe and angles between the field and C 6 axis ϕ≈ 0.5° and ϕ=7°. A new reorientational magnetic phase transition is observed in a field H c1≈39.0 kOe. The magnetic structure for H>H c1 is determined. The average Mn2+ spins of the magnetic sublattices in the new phase are determined from an analysis of the NMR spectrum to be 〈 S C 〉=1.63 and 〈S D 〉=1.72. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 12, 988–993 (25 June 1998)  相似文献   

4.
The NMR of 55Mn in the quasi-one-dimensional noncollinear antiferromagnet CsMnI3 at T=1.3 K is investigated in magnetic fields up to ∼40 kOe. Six NMR branches corresponding to six manganese spins per magnetic unit cell are observed. The NMR spectra correspond satisfactorily to the well-known magnetic structure of CsMnI3, taking into account the dynamic frequency shift due to the interaction with the low-lying AFMR modes. The average spins 〈S A〉=1.86 and 〈S B〉=1.74 of the magnetically nonequivalent Mn2+ ions are determined from the measured values of the hyperfine fields. The results obtained agree qualitatively with the calculations of spin reduction in quasi-one-dimensional antiferromagnets [Y. Watabe, T. Suzuki, and Y. Natsume, Phys. Rev. B 52, 3400 (1995)]. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 9, 661–665 (10 May 1998)  相似文献   

5.
We revisit the problem of a two-dimensional polymer ring subject to an inflating pressure differential. The ring is modeled as a freely jointed closed chain of N monomers. Using a Flory argument, mean-field calculation and Monte Carlo simulations, we show that at a critical pressure, pcN-1, the ring undergoes a second-order phase transition from a crumpled, random-walk state, where its mean area scales as 〈A〉 ∼ N, to a smooth state with 〈A〉 ∼ N2. The transition belongs to the mean-field universality class. At the critical point a new state of polymer statistics is found, in which 〈A〉 ∼ N3/2. For ppc we use a transfer-matrix calculation to derive exact expressions for the properties of the smooth state.  相似文献   

6.
We use the data on the pressure (up to P=1.5 GPa) and field (up to H=17 kOe) dependence of the Hall coefficient and the resistivity at 77.6 and 300 K in p-CdSnAs2〈Cu〉 to calculate the effective kinetic characteristics of the charge carriers, the density and mobility of the conduction electrons and the holes of the deep acceptor and valence bands, in an interval of excess-acceptor densities N ext ranging from 1010–1017 cm−3. We establish that in a heavily doped semiconductor with a deep impurity band at the tail of the density of states of the intrinsic band, with unequal donor and acceptor densities, a a heavily doped and fully compensated semiconductor state is realized under hydrostatic compression. The threshold value of the pressure that initiates the transition into such a state, P c, depends on the extent to which the impurity band is populated. In p-CdSnAs2〈Cu〉 at N ext=N A, where N A is the density of deep acceptors, and T⩽77.6 K the value of P c amounts to 10−4 GPa. As the population of the deep acceptor band grows, P c increases and in the limit becomes infinite. We discuss the special features of the electrophysical properties of p-CdSnAs2〈Cu〉 arising from the absence of an energy gap between the states of the conduction band and those of the deep acceptor band. Zh. éksp. Teor. Fiz. 111, 562–574 (February 1997)  相似文献   

7.
A theoretical framework for treating the effects of magnetic fieldH on the pairing theory of superconductivity is considered, where the field is taken in an arbitrary direction with respect to crystal axes. This is applicable to closed, as well as open normal state Fermi surface (FS), including simple layered metals. The orbital effects of the magnetic field are treated semiclassically while retaining the full anisotropic paramagnetic contribution. Explicit calculations are presented in the limits |H| → |H c2(T)|,T ∼ 0 andTT c(|H|), |H| ∼ 0. Effects of weak nonmagnetic impurity scattering, without vertex corrections, have also been taken into account in a phenomenological way. The final results for the case of open FS and layered materials are found to differ considerably from those of the closed FS. For example, an important parameter,h(T=0)=|Hc2(0)|/[-Tδ|H c2 TT]T{s0} for the case of a FS open ink z-direction with thek z-bandwidth, 4t 3, very small compared to the Fermi energy,E F, is close to 0.5906, compared to 0.7273 for the closed FS, in the clean limit. Analytical results are given for the magnetic field dependence ofT c and the temperature dependence of H c2 for a model of layered superconductors with widely open FS. For a set of band structure parameters for YBa2Cu3O7 used elsewhere, we find reasonable values for the upper critical fieldH c2(0), the slope (dH c2/dT)T c0, anisotropic coherence lengths ζi(T=0),i=x, y, z, and (dT c/d|H|)|H| → 0.  相似文献   

8.
The mean area of a two-dimensional Gaussian ring of N monomers is known to diverge when the ring is subject to a critical pressure differential, p cN -1. In a recent publication (Eur. Phys. J. E 19, 461 (2006)) we have shown that for an inextensible freely jointed ring this divergence turns into a second-order transition from a crumpled state, where the mean area scales as 〈A〉 ∼ N, to a smooth state with 〈A〉 ∼ N 2. In the current work we extend these two models to the case where the swelling of the ring is caused by trapped ideal-gas particles. The Gaussian model is solved exactly, and the freely jointed one is treated using a Flory argument, mean-field theory, and Monte Carlo simulations. For a fixed number Q of trapped particles the criticality disappears in both models through an unusual mechanism, arising from the absence of an area constraint. In the Gaussian case the ring swells to such a mean area, 〈A〉 ∼ NQ, that the pressure exerted by the particles is at p c for any Q. In the freely jointed model the mean area is such that the particle pressure is always higher than p c, and 〈A〉 consequently follows a single scaling law, 〈A〉 ∼ N 2 f (Q/N), for any Q. By contrast, when the particles are in contact with a reservoir of fixed chemical potential, the criticality is retained. Thus, the two ensembles are manifestly inequivalent in these systems. An erratum to this article is available at .  相似文献   

9.
In this paper, a single crystal of 0.96Na0.5Bi0.5TiO3-0.04BaTiO3 with dimensions of Φ 30×10 mm was grown by the top-seeded-solution growth method. X-ray powder diffraction results show that the as-grown crystal possesses the rhombohedral perovskite-type structure. The dielectric, piezoelectric and electrical conductivity properties were systematically investigated with 〈001〉, 〈110〉 and 〈111〉 oriented crystal samples. The room-temperature dielectric constants for the 〈001〉, 〈110〉 and 〈111〉 oriented crystal samples are found to be 650, 740 and 400 at 1 kHz. The (T m, ε m) values of the dielectric temperature spectra are almost independent of the crystal orientations; they are (306°C, 3718), (305°C, 3613) and (307°C, 3600) at 1 kHz for the 〈001〉, 〈110〉 and 〈111〉 oriented crystal. The optimum poling conditions were obtained by investigating the piezoelectric constants d 33 as a function of poling temperature and poling electric field. For the 〈001〉 and 〈110〉 crystal samples, the maximum d 33 values of 146 and 117 pC/N are obtained when a poling electric field of 3.5 kV/mm and a poling temperature of 80°C were applied during the poling process. The as-grown 0.96Na0.5Bi0.5TiO3-0.04BaTiO3 crystal possesses a relatively large dc electrical conductivity, especially at higher temperature, having a value of 1.98×10−11 Ω−1⋅m−1 and 3.95×10−9 Ω−1⋅m−1 at 25°C and 150°C for the 〈001〉 oriented crystal sample.  相似文献   

10.
A magnetic phase transition in carbon-doped (0.1 and 0.7 at. %) Fe70Ni30 Invar alloys was investigated by the method of depolarization of a transmitted neutron beam and by small-angle scattering of polarized neutrons. It is shown that for both alloys, two characteristic length scales of magnetic correlations coexist above T c. Small-angle scattering by critical correlations with radius R c is described well by the Ornstein-Zernike (OZ) expression. The longer-scale (second) correlations, whose size can be estimated from depolarization data, are not described by the OZ expression, and hypothetically can be modeled by a squared OZ expression, which in coordinate space corresponds to the relation 〈M(r)M(0)〉∝exp(−r/R d), where R d is the correlation length of the second scale. The temperature dependence of the correlation radius R c was obtained: R c ∝ ((TT c)/Tc)ν , where ν≈2/3 is the critical exponent for ferromagnets, over a wide temperature range up to T c exp , at which the correlation radius becomes constant and equals its maximum value R c(T c)=R c max . The maximum correlation radius established (R c max =140 Å and 230 Å for the first and second alloys, respectively) characterizes the length-scale of the fluctuation for which the appearance of critical correlations first results in the formation of a ferromagnetic phase, and the phenomenon itself exhibits a “disruption” of the second-order phase transition at T=T c exp , as a result of which a first-order transition arises. Temperature hysteresis was also detected in the measured polarization of the transmitted beam and intensity of small-angle neutron scattering in the alloy above T c, confirming the character of this magnetic transition as a first-order transition close to a second-order transition. Zh. éksp. Teor. Fiz. 112, 2134–2155 (December 1997)  相似文献   

11.
Using the general formulation for obtaining chemical potentialμ of an ideal Fermi gas of particles at temperature T, with particle rest mass m0 and average density 〈N〉/V, the dependence of the mean square number fluctuation 〈ΔN 2〉/V on the particle mass m0 has been calculated explicitly. The numerical calculations are exact in all cases whether rest mass energym 0c2 is very large (non-relativistic case), very small (ultra-relativistic case) or of the same order as the thermal energy kBT. Application of our results to the detection of the universal very low energy cosmic neutrino background (CNB), from any of the three species of neutrinos, shows that it is possible to estimate the neutrino mass of these species if from approximate experimental measurements of their momentum distribution one can extract, someday, not only the density 〈N v〉/V but also the mean square fluctuation 〈Δ v 2 〉/V. If at the present epoch, the universe is expanding much faster than thermalization rate for CNB, it is shown that our analysis leads to a scaled neutrino massm v instead of the actual massm 0v .  相似文献   

12.
A. V. Lazuta 《JETP Letters》1997,65(4):363-368
Recent results on the effect of magnetic field on the sound velocity V in aluminosilicate glasses doped with dysprosium are analyzed on the basis of a minimal model for the ground state of Dy3+ (Kramers ion with J=15/2) described by a wave function ϕ ± = ϕ ± J m + ηϕ ± 1/2. The first term represents a state with a large J projection on the local crystal field axis and the random parameter η(〈η〉=0, 〈η 2〉≪1) introduces a small admixture of the state ϕ ±1/2 into the ground state. The relative variation of V due to the resonance interaction of sound waves with this state split by H is determined as a function of H and T. It possesses a universal asymptotic behavior. Our results are in reasonable agreement with the experiment. A possible structure of the crystal fields that can induce this state is discussed. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 4, 341–346 (25 February 1997) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

13.
S N Vaidya 《Pramana》1979,12(1):23-32
A theory of melting based on vacancy model is formulated. The polymer solution theory is used for derivation of the melting equation for a two-species model of melting solid. Under simplifying assumptions the analysis leads to a simple correlation betweenT m and 〈v〉, the average energy of interaction between the vibrating atoms. Pseudopotential method is used for calculating 〈v〉 for the alkali metals lithium, sodium, potassium and rubidium at temperatureT m. The calculated values ofT mv〉 are in accord with those expected from our model. Application to the high pressure melting curves of solids is also discussed.  相似文献   

14.
The temperature and magnetic-field dependences of the resistivity ρ and Hall effect R(jab, Bc) in a Nd1.82Ce0.18CuO4−δ single crystal film (T c =6 K) is investigated at temperatures 1.4≤T≤20 K and magnetic fields 0≤B≤5.5 T. At the lowest temperature T=1.4 K the resistive state (exhibiting resistivity and the Hall effect) arises in a magnetic field B=0.5 T. A transition to the normal state is completed at B c 2≃3 T, where the Hall coefficient becomes nearly constant. The negative magnetoresistance due to the weak-localization effect in the normal state is observed for B>3 T. The nonmonotonic behavior and the inversion of the sign of R(B) in the mixed state are explained in a reasonable way by the flux-flow model with the effect of pinning taken into account. Pis’ma Zh. éksp. Teor. Fiz. 64, No. 6, 407–411 (25 September 1996) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

15.
The longitudinalμ +-spin relaxation rate has been measured on a high-purity spherical α-iron single crystal at temperaturesT down to 20 mK and in applied magnetic fieldsB appl parallel to 〈111〉 up to 3 T. Only above 1 K can the data be satisfactorily described by one rate constantГ. At 1 T≤B appl≤2 T and 50 mK≤T≤300 mK, oscillations (“wiggles”) were in addition superimposed on the longitudinal relaxation. A qualitative understanding of the measurements may be achieved in terms of the increasing influence of internal stresses onμ + diffusion as the temperature is lowered.  相似文献   

16.
A study has been carried out of the temperature dependences of luminescence spectra on a large number of CdTe/ZnTe structures differing in average thickness, 〈L z〉=0.25–4 monolayers (ML), and CdTe layer geometry (continuous, island type). The influence of geometric features in the structure of ultrathin layers on linewidth, the extent of lateral localization of excitons, their binding energy, and exciton-phonon coupling is discussed. It is shown that in island structures there is practically no lateral exciton migration. The exciton-phonon coupling constant in a submonolayer structure has been determined, Γph=53 meV, and it is shown that in structures with larger average thicknesses Γph is considerably smaller. Substantial lateral exciton migration was observed to occur in a quantum well with 〈L z〉=4 ML, and interaction with acoustic phonons was found to play a noticeable part in transport processes. It has been established that the depth of the exciton level in a quantum well and structural features of an ultrathin layer significantly affect the temperature dependences of integrated photoluminescence intensity. Fiz. Tverd. Tela (St. Petersburg) 41, 717–724 (April 1999)  相似文献   

17.
The temperature dependence of the order parameter (〈M 2〉, the mean-square spin excess per spin) for a system with a finite number of spins of the 1D Ising model was investigated. It was shown that there is a nonzero temperature T s below which 〈M 2〉 rapidly tends to unity. The analogy between the 1D ensemble of a finite number of spins and a system of superparamagnetic particles is discussed.  相似文献   

18.
We find the dependence of the ensemble-averaged resistance, 〈ρ L〉, of a one-dimensional chain consisting of periodically spaced random delta-function potentials of the chain length L, the incident-electron energy, and the chain disorder parameter w. We show that generally the 〈ρ L〉 vs L dependence can be written as a sum of three exponential functions, two of which tend to zero as L℩∞. Hence the asymptotic expression for 〈ρ L〉 is always an exponential function of L. Such an expression for 〈ρ L〉 means that the electronic states are indeed localized and makes it possible (which is important) to find the dependence of the localization radius on the incident-electron energy and the force with which an electron interacts with the sites of the chain. We also derive a recurrence representation for 〈ρ L〉, which proves convenient in numerical calculations. Zh. éksp. Teor. Fiz. 111, 575–584 (February 1997)  相似文献   

19.
Supercooling in the transition of a type I superconductor to the superconducting state in contact with another superconductor whose critical temperature is higher has been measured. Using aluminum as a test material, it has been demonstrated that at temperatures below the critical temperature T c and magnetic fields below the critical field H c(T), aluminum remains in a metastable normal state, in spite of its contact with another superconductor. This means that it is not possible to generate a thermodynamic instability in a superconductor’s electronic system through the “proximity effect” with another superconductor whose critical temperature is higher. This experimental observation demonstrates a radical difference between surface superconductivity, which certainly generates instability in normal electronic states, and superconductivity induced by the proximity effect near a junction with another superconductor. Zh. éksp. Teor. Fiz. 112, 1119–1131 (September 1997)  相似文献   

20.
The field dependence of the vibrational contribution to the dynamic magnetic permeability μ V(H) is calculated for a thin (of thickness dλ) high-T c superconducting wafer in a magnetic field parallel to the surface. The resulting curves are plotted on the basis of an exact numerical analysis of the vortex structures both for the thermodynamic-equilibrium vortex lattice and in the presence of pinning forces and the Bean-Livingston surface barrier. It is shown that the μ V(H) curves are highly sensitive to the size factor (d/λ) and exhibit abrupt changes corresponding to a change in the number of vortex rows. The equilibrium μ V(H) curve is found to be similar in its general behavior and absolute value (obtained with allowance for the distribution of grain sizes and with appropriate values of λ and ϰ) to the experimental μ V(H) curve plotted at nitrogen temperature for fine-grained YBa2Cu3Ox with grain diameters 〈D〉∼λ in an increasing magnetic field. It is established that the main cause of the experimentally observed irreversible behavior of the μ V(H) curves during cyclic variation of the applied magnetic field is the existence of a surface barrier to the exit of vortices from the superconductor. The lower limit H min(B) of stability of the mixed state in the presence of an ideal surface barrier in a thin, high-T c superconducting wafer (dλ) is determined, along with the range of the vortex state (H max-H min) for a fixed number of vortices in micrometer-size grains of the investigated YBaCuO samples. Fiz. Tverd. Tela (St. Petersburg) 39, 1943–1947 (November 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号