首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We construct an atomistic silica pore model mimicking templated mesoporous silica MCM-41, which has molecular-level surface roughness, with the aid of the electron density profile (EDP) of MCM-41 obtained from X-ray diffraction data. Then, we present the GCMC simulations of argon adsorption on our atomistic silica pore models for two different MCM-41 samples at 75, 80, and 87 K, and the results are compared with the experimental adsorption data. We demonstrate that accurate molecular modeling of the pore structure of MCM-41 by using the experimental EDP allows the prediction of experimental capillary evaporation pressures at all investigated temperatures. The experimental desorption branches of the two MCM-41 samples are in good agreement with equilibrium vapor–liquid transition pressures from the simulations, which suggests that the experimental desorption branch for the open-ended cylindrical pores is in thermodynamic equilibrium.  相似文献   

2.
This paper reports the development and testing of atomistic models of silica MCM-41 pores. Model A is a regular cylindrical pore having a constant section. Model B has a surface disorder that reproduces the morphological features of a pore obtained from an on-lattice simulation that mimics the synthesis process of MCM-41 materials. Both models are generated using a similar procedure, which consists of carving the pore out of an atomistic silica block. The differences between the two models are analyzed in terms of small angle neutron scattering spectra as well as adsorption isotherms and isosteric heat curves for Ar at 87 K and Xe at 195 K. As expected for capillary condensation in regular nanopores, the Ar and Xe adsorption/desorption cycles for model A exhibit a large hysteresis loop having a symmetrical shape, i.e., with parallel adsorption and desorption branches. The features of the adsorption isotherms for model B strongly depart from those observed for model A. Both the Ar and Xe adsorption branches for model B correspond to a quasicontinuous pore filling that involves coexistence within the pore of liquid bridges and gas nanobubbles. As in the case of model A, the Ar adsorption isotherm for model B exhibits a significant hysteresis loop; however, the shape of the loop is asymmetrical with a desorption branch much steeper than the adsorption branch. In contrast, the adsorption/desorption cycle for Xe in model B is quasicontinuous and quasireversible. Comparison with adsorption and neutron scattering experiments suggests that model B is too rough at the molecular scale but reproduces reasonably the surface disorder of real MCM-41 at larger length scales. In contrast, model A is smooth at small length scales in agreement with experiments but seems to be too ordered at larger length scales.  相似文献   

3.
We present an accurate comparative analysis of N 2 adsorption at 77 K on nonporous silica and the pore wall surface of MCM-41 materials. The analysis shows that in the low-pressure region of N 2 adsorption obeys a peculiar mechanism governed by short-ranged forces, which makes the surface curvature effect on the N 2 adsorption in mesopores nearly negligible. We used this observation to define more exactly compared to the BET technique the specific surface area of the reference adsorption isotherm on nonporous silica basing on XRD data and linear sections of t-plots. Calculation of the capillary evaporation and condensation pressures seems to confirm our previous finding that the capillary condensation pressure corresponds to the equilibrium transition rather than spinodal condensation at least for pore sizes less than 7 nm. It allowed us to provide more reliable pore size distribution (PSD) analysis of mesoporous silica materials. For example, the PSDs of MCM-41 samples do not show artificial peaks in the micropore range that we obtained in our earlier publications.  相似文献   

4.
Adsorption isotherms of carbon tetrachloride at temperatures between 273 and 323 K have been determined on the pure silica form of MCM-41 of pore diameter ca. 3.4 nm. All isotherms were of Type V, the isotherms at 273, 288 and 303 K showing hysteresis loops, whereas the isotherm at 323 K was completely reversible. Despite the questionable validity of the Kelvin equation when applied to narrow mesopores, changes in the relative pressure positions of capillary condensation and evaporation as a function of the temperature appear to be well described. Neutron diffraction measurements at 200 and 273 K show significant changes in the physical properties of the adsorbed CCl4 in the MCM-41 from those of bulk adsorbate. The results also suggest a highly heterogeneous surface and appear to show some flexibility in the pore walls upon pore filling. The conditions required for first order reversible capillary condensation are discussed.  相似文献   

5.
A recently developed dynamic desorption technique is used for obtaining vapor isotherms on porous materials. This gravimetric technique does not require any preliminary calibration and is based on analyzing the kinetics of liquid evaporation from a porous sample under quasi-steady state conditions. The crucial feature of the technique is concerned with the fact that no vapor pressure measurements are necessary. The technique is illustrated by desorption of benzene vapors from mesoporous silica MCM-41. To calculate the pore size distribution, the Derjaguin–Broekhoff–de Boer theory in its combination with the Wheeler model for capillary condensation is used. In the calculations, the reference data on benzene adsorption on a nonporous silica gel from two different sources (published by different authors) are applied. The mean mesopore sizes estimated from desorption isotherms are shown to be in a fair agreement with the calculations through the geometrical method based on the X-ray diffraction data. The dynamic desorption technique can serve as an additional tool for the characterization of a porous media.  相似文献   

6.
Study of hexane adsorption in nanoporous MCM-41 silica   总被引:2,自引:0,他引:2  
We study here the adsorption of hexane on nanoporous MCM-41 silica at 303,313, and 323 K, for various pore diameters between 2.40 and 4.24 nm. Adsorption equilibria, measured thermogravimetrically, show that all the isotherms, that are somewhat akin to those of type V, exhibit remarkably sharp capillary adsorption phase transition steps and are reversible. The position of the phase transition step gradually shifts from low to high relative pressure with an increase in the temperature as well as the pore sizes. The isosteric heats of adsorption derived from the equilibrium information using the Clapeyron equation reveal a gradual decrease with increasing adsorbed amount because of the surface heterogeneity but approach a constant value near the phase transition. A decrease in the pore size results in an increase in the isosteric heat of adsorption because of the increased dispersion forces. A simple strategy, based on the Broekhoff and De Boer adsorption theory, successfully interprets the hexane adsorption isotherms for the different pore size MCM-41 samples. The parameters of an empirical expression, used to represent the potential of interaction between the adsorbate and adsorbent, are obtained by fitting the monolayer region prior to capillary condensation and the experimental phase transition simultaneously, for some pore sizes. Subsequently, the parameters are used to predict the adsorption isotherm on other pore size samples, which showed good agreement with experimental data.  相似文献   

7.
This paper reports a molecular simulation and experimental study on the adsorption and condensation of simple fluids in mesoporous micelle-templated silicas MCM-41, MCM-48, and SBA-15. MCM-41 is described as a regular cylindrical silica nanopore, while SBA-15 is assumed to be made up of cylindrical nanopores that are connected through lateral channels. The 3D-connected topology of MCM-48 is described using a gyroid periodic minimal surface. Argon adsorption at 77 K is calculated for the three materials using Grand Canonical Monte Carlo simulations. Qualitative comparison with experiments for nitrogen adsorption in mesoporous micelle-templated silicas is made. The adsorption isotherm for SBA-15 resembles that for MCM-41. In particular, capillary condensation and evaporation are not affected by the presence of the connecting lateral channels. In contrast, the argon adsorption isotherm for MCM-48 departs from that for MCM-41 having the same pore size. While condensation in MCM-41 is a one-step process, filling of MCM-48 involves two successive jumps in the adsorbed amounts which correspond to condensation in different domains of the porosity. The condensation pressure for MCM-48 is larger than that for MCM-41. We attribute this result to the morphology of the MCM-48 surface (made up of both concave and convex regions) that differs from that for MCM-41 (concave only). Our results suggest that the pore connectivity affects pore filling when the size of the connections is comparable to that of the nanopores.  相似文献   

8.
合成了一系列具有不同孔结构与性质的有序介孔二氧化硅材料SBA-15、MCM-41、SBA-16、KIT-6, 同时通过改变水热温度制备了不同孔径大小的SBA-15, 并利用小角X射线散射、透射电镜、扫描电镜和氮气吸附-脱附等手段, 对其介孔结构进行了表征. 以正丁醛为探针分子, 考察了其对有机醛的吸附, 并与Y-沸石的吸附性能做了对比. 结果表明, 材料的介孔比表面积与其对正丁醛的吸附量成正比, 吸附等温线符合Langmuir 模型, 属于单层吸附, 具有最大介孔比表面积的MCM-41对正丁醛的吸附量最大(484 mg·g-1). 最后将SBA-15添加到卷烟滤嘴中, 实验结果表明, SBA-15能显著降低卷烟烟气中巴豆醛的释放量.  相似文献   

9.
This paper presents a thermodynamic analysis of capillary condensation phenomena in cylindrical pores. Here, we modified the Broekhoff and de Boer (BdB) model for cylindrical pores accounting for the effect of the pore radius on the potential exerted by the pore walls. The new approach incorporates the recently published standard nitrogen and argon adsorption isotherm on nonporous silica LiChrospher Si-1000. The developed model is tested against the nonlocal density functional theory (NLDFT), and the criterion for this comparison is the condensation/evaporation pressure versus the pore diameter. The quantitative agreement between the NLDFT and the refined version of the BdB theory is ascertained for pores larger than 2 nm. The modified BdB theory was applied to the experimental adsorption branch of adsorption isotherms of a number of MCM-41 samples to determine their pore size distributions (PSDs). It was found that the PSDs determined with the new BdB approach coincide with those determined with the NLDFT (also using the experimental adsorption branch). As opposed to the NLDFT, the modified BdB theory is very simple in its utilization and therefore can be used as a convenient tool to obtain PSDs of all mesoporous solids from the analysis of the adsorption branch of adsorption isotherms of any subcritical fluids.  相似文献   

10.
合成了一系列具有不同孔结构与性质的有序介孔二氧化硅材料SBA-15、MCM-41、SBA-16、KIT-6,同时通过改变水热温度制备了不同孔径大小的SBA-15,并利用小角X射线散射、透射电镜、扫描电镜和氮气吸附-脱附等手段,对其介孔结构进行了表征.以正丁醛为探针分子,考察了其对有机醛的吸附,并与Y-沸石的吸附性能做了对比.结果表明,材料的介孔比表面积与其对正丁醛的吸附量成正比,吸附等温线符合Langmuir模型,属于单层吸附,具有最大介孔比表面积的MCM-41对正丁醛的吸附量最大(484 mg·g-1).最后将SBA-15添加到卷烟滤嘴中,实验结果表明,SBA-15能显著降低卷烟烟气中巴豆醛的释放量.  相似文献   

11.
MCM-41分子筛和催化剂的特殊吸附等温线   总被引:2,自引:0,他引:2  
崔峻  乐英红  刘毅  董维阳  高滋 《化学学报》1997,55(10):974-978
测定了MCM-41中孔分子筛和催化剂的吸附等温线, 发现它们形状非常特殊, 不仅可逆部分分两段, 并且还存在两个滞后环, 在相对压力0.4以前出现的第一个滞后环可归属于中孔孔道内的毛细凝聚, 在饱和压力附近出现的第二个滞后环可归属于分子筛颗粒之间的毛细凝聚。利用吸附和XRD数据, 可有效地表征MCM-41分子筛和催化剂的结构有序度和孔道畅通情况。  相似文献   

12.
Template transformation in MCM-41 material during thermal treatment under different conditions was investigated on the basis of thermogravimetry (TG-DTA), X-ray diffraction (XRD) and positron annihilation lifetime spectroscopy (PALS). Micelle templated silica was prepared using C18 trimethylammonium bromide. The pore structure of MCM-41 samples obtained after removal of the surfactant in air, argon flow and vacuum was analyzed on the basis of the adsorption isotherms of nitrogen at 77 K and XRD experiments. The TG-DTA experiments confirm the mechanism of the template removal known from literature. However, the sequence of the processes during thermal treatment of as-synthesized sample and temperature of transformations depended strongly on the presence of oxygen and the heating rate. The main template degradation took place below 573 K and was independent of the kind of atmosphere above the sample. Residual carbonaceous species are removed from pores and the external surface of MCM-41 silica upon heating to 823 K by combustion or evaporation. The latter process as well as translocation of liquid-like products of template degradation from the pore interior to external surface was confirmed by PALS experiment in vacuum.  相似文献   

13.
Adsorption-desorption isotherms of toluene, methylcyclohexane and neopentane were determined on a silica MCM-41 material of pore diameter ∼3.4 nm over the temperature range 258 K to 308 K (278 K for neopentane). The isosteric enthalpies of adsorption were determined from the isotherms at the various temperatures. It was found that the isotherms of toluene and methylcyclohexane have a similar variation with the temperature, exhibiting hysteresis at 268 K and at lower temperature, while the adsorption of neopentane is reversible at all temperatures. The three organic adsorptives interact differently with the silica surface and the isosteric enthalpies of adsorption indicated that methylcyclohexane has the weakest interaction and toluene the strongest. A slight increase in the adsorption enthalpy at the beginning of the capillary condensation step is observed with methylcyclohexane and neopentane but not with toluene.  相似文献   

14.
In this work, batch adsorption experiments are carried out for crystal violet dye using mesoporous MCM-41 synthesized at room temperature and sulfate modified MCM-41 prepared by impregnation method using H2SO4 as sulfatising agent. The surface characteristics, pore structure, bonding behavior and thermal degradation of both the MCM-41 samples are characterized by nitrogen adsorption/desorption isotherms, X-ray diffraction (XRD) patterns, Fourier transform infrared (FT-IR) spectroscopy and thermo gravimetric analysis (TGA). The adsorption isotherm, kinetics and thermodynamic parameters are investigated for crystal violet (CV) dye using the calcined and sulfated MCM-41. Results are analysed using Langmuir, Freundlich and Redlich-Peterson isotherm models. It is found that the Freundlich model is an appropriate model to explain the adsorption isotherm. The highest adsorption capacity achieved is found to be 3.4×10−4 mol g−1 for the sulfated MCM-41. The percentage removal of crystal violet dye increases with increase in the pH for both the MCM-41 adsorbents. Kinetics of adsorption is found to follow the second-order rate equation. From the thermodynamic investigation, it is evident that the adsorption is exothermic in nature.  相似文献   

15.
In this work, the X-ray diffraction structure modeling was employed for analysis of hexagonally ordered large-pore silicas, SBA-15, to determine their pore width independently of adsorption measurements. Nitrogen adsorption isotherms were used to evaluate the relative pressure of capillary condensation in cylindrical mesopores of these materials. This approach allowed us to extend the original Kruk-Jaroniec-Sayari (KJS) relation (Langmuir 1997, 13, 6267) between the pore width and capillary condensation pressure up to 10 nm instead of previously established range from 2 to 6.5 nm for a series of MCM-41 and to improve the KJS pore size analysis of large pore silicas.  相似文献   

16.
Four samples of MCM-41 mesoporous silicas whose average pore diameters are 2.4, 2.8, 3.2, and 3.6 nm were prepared using sodium orthosilicate and cationic surfactants of [CH(3)(CH(2))(n)N(CH(3))(3)]X (n=11, 13, 15, 17). These four samples were calcined at 1123 K in vacuo to obtain the dehydroxylated samples, which were further rehydroxylated at 298 K to obtain the rehydroxylated samples. The adsorption isotherms of nitrogen gas (77 K) for the 12 MCM-41 mesoporous silicas are of Type IVc, giving no adsorption hysteresis. On the other hand, the first adsorption isotherms of water vapor (298 K) for the dehydroxylated MCM-41 samples are quite different from those of nitrogen gas, giving the remarkable adsorption hysteresis. The second water isotherms for the rehydroxylated MCM-41 samples are of Type IV, showing slight hysteresis. Using the nitrogen isotherms, the relation between the pore size and carbon chain length of the surfactant has been determined, and the effect of dehydroxylation and rehydroxylation on the porous texture has been examined. Using the first and second water isotherms, the adsorption model of physisorbed waters adsorbed on the surface silanol groups has been proposed. From the pore size distribution curves of nitrogen and water, the presence of constrictions in the cylindrical pores has been predicted. Copyright 2000 Academic Press.  相似文献   

17.
Ce-containing MCM-41 materials were prepared via a direct, nonhydrothermal method at room temperature from tetra-ethoxysilane, n-hexadecyl trimethyl ammonium bromide, ammonia solution, and cerium(IV) ammonium nitrate precursors. Composite materials containing the nominated ratios of 5 and 10% (w/w) CeO2/MCM-41 were targeted. The obtained materials were investigated by TGA, DSC, FTIR, diffuse reflectance UV-vis, XRD, N2 adsorption/desorption isotherms, and SEM. Results indicated the insertion of cerium ions in tetrahedral environment in the framework of MCM-41. BET surface area amounting to 824 and 726 m2/g; total pore volume amounting to 0.427 and 0.515 cm3/g; and narrow pore size distribution maximizing at 22.5 and 23.7 A, respectively were obtained for the 5 and 10% CeO2/MCM-41 calcined composites. SEM showed a spherical type morphology for the composites which is rather similar to their blank MCM-41, and no clear ceria aggregates were observed on the external surfaces of composites spherical particles. Thus, the adopted method allows the persistence of MCM-41 texture with cerium inserts in the framework of MCM-41 and/or forms finely divided ceria nanoparticles on the wall of MCM-41 materials. Moreover, stabilization of any formed ceria nanoparticles was attributed to the short nonintersecting porous nature of MCM-41 matrix, which hinders their aggregation upon calcinations.  相似文献   

18.
This paper reports a molecular simulation study on the adsorption of simple fluids (argon at 77 K) on hydroxylated silica surfaces and nanopores. The effect of surface chemistry is addressed by considering substrates with either partially or fully hydroxylated surfaces. We also investigate the effect of pore shape on adsorption and capillary condensation by comparing the results for cylindrical and hexagonal nanopores having equivalent sections (i.e., equal section areas). Due to the increase in the polarity of the surface with the density of OH groups, the adsorbed amounts for fully hydroxylated surfaces are found to be larger than those for partially hydroxylated surfaces. Both the adsorption isotherms for the cylindrical and hexagonal pores conform to the typical behavior observed in the experiments for adsorption/condensation in cylindrical nanopores MCM-41. Capillary condensation occurs through an irreversible discontinuous transition between the partially filled and the completely filled configurations, while evaporation occurs through the displacement at equilibrium of a hemispherical meniscus along the pore axis. Our data are also used to discuss the effect of surface chemistry and pore shape on the BET method. The BET surface for fully hydroxylated surfaces is much larger (by 10-20%) than the true geometrical surface. In contrast, the BET surface significantly underestimates the true surface when partially hydroxylated surfaces are considered. These results suggest that the surface chemistry and the choice of the system adsorbate/adsorbent is crucial in determining the surface area of solids using the BET method.  相似文献   

19.
张现仁  汪文川 《化学学报》2002,60(9):1606-1612
首先比较了表征MCM-41的两个势模型对吸附等温线的影响。发现在一维势模型 中,低压部分的吸附应与选用的势模型的势阱深度有关,而毛细凝聚发生的位置与 孔壁在离壁面较远处与流体分子的相互作用的强弱有关。然后作者使用了一个“混 合”的势模型,即采用作者提出的势函数表征孔壁中氧原子对MCM-41中流体分子的 作用,而采用Tjatjopoulos等提出的势函数近似地表征MCM-41表面硅醇基团以及一 些未知因子对流体分子的作用。虽然这种势模型仍然是一维的,但这种势模型将孔 壁内氧原子的作用和表面上非均匀性分开考虑,具有较明确的物理意义。通过计算 机模拟与实验数据的比较发现,这种势模型可以较好地拟合氮气在MCM-41中的吸附 等温线。  相似文献   

20.
We report results of nitrogen and argon adsorption experiments performed at 77.4 and 87.3 K on novel micro/mesoporous silica materials with morphologically different networks of mesopores embedded into microporous matrixes: SE3030 silica with worm-like cylindrical channels of mode diameter of approximately 95 angstroms, KLE silica with cage-like spheroidal pores of ca. 140 angstroms, KLE/IL silica with spheroidal pores of approximately 140 angstroms connected by cylindrical channels of approximately 26 angstroms, and, also for a comparison, on Vycor glass with a disordered network of pores of mode diameter of approximately 70 angstroms. We show that the type of hysteresis loop formed by adsorption/desorption isotherms is determined by different mechanisms of condensation and evaporation and depends upon the shape and size of pores. We demonstrate that adsorption experiments performed with different adsorptives allow for detecting and separating the effects of pore blocking/percolation and cavitation in the course of evaporation. The results confirm that cavitation-controlled evaporation occurs in ink-bottle pores with the neck size smaller than a certain critical value. In this case, the pressure of evaporation does not depend upon the neck size. In pores with larger necks, percolation-controlled evaporation occurs, as observed for nitrogen (at 77.4 K) and argon (at 87.3 K) on porous Vycor glass. We elaborate a novel hybrid nonlocal density functional theory (NLDFT) method for calculations of pore size distributions from adsorption isotherms in the entire range of micro- and mesopores. The NLDFT method, applied to the adsorption branch of the isotherm, takes into account the effect of delayed capillary condensation in pores of different geometries. The pore size data obtained by the NLDFT method for SE3030, KLE, and KLE/IL silicas agree with the data of SANS/SAXS techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号