首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation mechanism of rapidly solidified microstructures in a magnesia partially stabilised zirconia (MgO-PSZ) following CO2 laser radiation has been investigated. The influence of laser processing parameters on the microstructures of this material was analysed based on a review of the basic concepts of solidification, the theories of constitutional suppercooling and morphological stability. The different microstructures that were brought about by various laser parameters and appeared across the same track were examined based on the CO2 laser beam profile of a transverse electromagnetic mode (TEM01). The contact angle measurement revealed a better wettability characteristic of CO2-laser-modified MgO-PSZ. The clear differences were observed in the change in contact angle for glycerol across the range of rapid solidification microstructures obtained with various power densities. It was therefore determined that the degree of rapid surface resolidification could be the most predominant element governing the wettability characteristics of the MgO-PSZ. The sharp reduction of contact angle for glycerol took place when the cellular microstructure appeared and might be accompanied by the onset of melting on the modified surface of the MgO-PSZ. Moreover, the CO2 laser treatment also brought about the change in the surface oxygen content and surface roughness. The analysis showed that surface oxygen content was also an influential factor in changing the wettability characteristics of the MgO-PSZ, whilst surface roughness was found to play an insignificant role. The work provides the clear evidence that laser radiation can be a workable and controllable technique to modify the wetting characteristic of the MgO-PSZ.  相似文献   

2.
魏智  金光勇  彭博  张喜和  谭勇 《物理学报》2014,63(19):194205-194205
为了研究毫秒脉冲激光辐照硅基PIN多层结构产生的温度场和应力场的特点,本文基于热传导理论和弹塑性力学理论,利用等效比热容法处理相变潜热,考虑多个热源,尤其是底层铝电极反射的影响,并考虑硅基PIN探测器每层材料参数的非线性影响,采用有限元模拟软件COMSOL Multiphysics,对毫秒脉冲激光辐照硅基PIN多层结构的过程进行了二维数值模拟,得到了材料表层及内部各层的瞬态温度场与应力场的时空分布和变化规律.结果表明,底层铝电极对激光的反射,使得在底层铝电极处及附近硅层的温度都略有升高.在此基础上,分析了毫秒脉冲激光辐照硅基PIN的硬破坏机理,即熔融前力学损伤导致硅基PIN探测器的功能失常.  相似文献   

3.
In this work we present periodic surface structures generated by linearly polarized F2 laser light (157 nm) on polyethyleneterephthalate (PET). Atomic force microscopy was used to study the topological changes induced by the laser irradiation. The laser irradiation induces the formation of periodic ripple structures with a width of ca 130 nm and a height of about 15 nm in the fluence range 3.80-4.70 mJ/cm2 and the roughness of the polymer surface increases due to the presence of these periodic structures. Subsequently, the laser modified PET foils were coated with a 50 nm thick gold layer by sputtering. After Au deposition on the PET foils with ripple structure, the roughness of surface decreases in comparison to PET with ripples without Au coating. For 50 nm thick Au layers, the ripple structure is not directly transferred to the gold coating, but it has an obvious effect on the grain size of the coating. With considerably thinner Au layers, the ripple structures are smoothened but preserved.  相似文献   

4.
采用耦合了双温度模型的分子动力学方法对飞秒激光烧蚀金箔的传热过程进行了模拟研究,考虑了非傅里叶效应,探究了不同激光能流密度下等离子体羽流的屏蔽作用.根据密度分布将激光烧蚀过程中的金箔划分为过热液体层、熔融液体层和固体层,并比较了不同激光能量密度下过热液体层表面发生的相爆炸沸腾现象以及表面温度的变化情况.结果表明,随着激光能量密度的增大,等离子体的屏蔽比例几乎呈线性增大.在激光的烧蚀过程中,金箔的上表面最先经历液体层以及过热液体层,并且随着时间的推移,液体层和过热液体层逐渐向金箔底部移动.过热液体层发生体积移除的相爆炸沸腾是金箔烧蚀的主要方式,随着激光能量的增大,爆炸沸腾发生的时间提前,并且结束的时间相应延后,持续时间变长.  相似文献   

5.
The CO2 laser cutting of three polymeric materials namely polypropylene (PP), polycarbonate (PC) and polymethyl methacrylate (PMMA) is investigated with the aim of evaluating the effect of the main input laser cutting parameters (laser power, cutting speed and compressed air pressure) on laser cutting quality of the different polymers and developing model equations relating input process parameters with the output. The output quality characteristics examined were heat affected zone (HAZ), surface roughness and dimensional accuracy. Twelve sets of tests were carried out for each of the polymer based on the central composite design. Predictive models have been developed by response surface methodology (RSM). First-order response models for HAZ and surface roughness were presented and their adequacy was tested by analysis of variance (ANOVA). It was found that the response is well modeled by a linear function of the input parameters. Response surface contours of HAZ and surface roughness were generated. Mathematical model equations have been presented that estimate HAZ and surface roughness for various input laser cutting parameters. Dimensional accuracies of laser cutting on polymers were examined by dimensional deviation of the actual value from the nominal value. From the analysis, it has been observed that PMMA has less HAZ, followed by PC and PP. For surface roughness, PMMA has better cut edge surface quality than PP and PC. The response models developed can be used for practical purposes by the manufacturing industry. However, all three polymeric materials showed similar diameter errors tendency in spite of different material properties.  相似文献   

6.
In this work we present the possible application of a new parameter called localization factor for the quantitative characterization of surface structures with atomic force microscopy (AFM). For this purpose contact mode AFM images were taken from technologically different polycrystalline gold thin films and were evaluated according to the following parameters: surface roughness (R(a), R(RMS)), roughness factor (f(r)) and localization factor. The localization factor was compared with the other surface parameters. We demonstrate that this new parameter can be used to identically characterize these gold thin film surfaces with contact mode AFM in the 1-1000 μm(2) scan range. The mathematical background and possible application fields of the localization factor are also discussed in our paper.  相似文献   

7.
Owing to poor tribological properties, titanium (Ti) alloys are usually surface-treated to enhance their surface properties. Laser surface nitriding, among others, is a common method employed to increase hardness and wear resistance for Ti alloys. Conventional laser nitriding involves surface melting of Ti alloys in a nitrogen atmosphere. This inevitably results in a roughened surface and post-treatment might be required. The present study aims at laser diffusion nitriding Ti alloys without surface melting via carefully selecting the laser processing parameters. The nitrided surface was characterized by X-ray diffractometry (XRD), optical microscopy (OM), scanning-electron microscopy (SEM), and profilometry. The nitride layer formed was about 1.62 μm upon repeated passes. The change in surface roughness resulting from laser diffusion nitriding was only minimal. Nanoindentation measurements revealed that the hardness of the nitride layer was around 11.3 GPa, being about 2.3 times that of Ti-6Al-4V. Ball-on-slab sliding wear test recorded a reduction in wear volume by about 8 times. The results of the present work thus demonstrate the feasibility of diffusion nitriding of Ti-6Al-4V by laser treatment for enhancing its surface properties and performance.  相似文献   

8.
导模共振光栅是一种典型的平面波导共振结构,可在光栅表面或波导层内形成较强的局域电场,能增强光与物质的相互作用.本文在导模共振结构的光栅层和基底层之间,引入低折射率的多孔二氧化硅间隔层,显著增强了局域电场与增益介质的接触度.结果表明,引入多孔二氧化硅后,共振产生的电场增强区域上移至激光染料层,增加了激光染料与电场的相互作用,实现了激光出射增强.本文基于时域有限差分法,对结构参数进行分析优化,研究了820 nm共振波长激发下的出射激光特性,得到了连续的激光出射,其能量阈值约为2.5 mJ/cm^2,线宽约为0.3 nm.本文提出的结构实现了对表面局域电场的有效调控,增强了激发光与增益介质的相互作用,不但可应用于激光器,还为其它发光器件的设计提供了参考.  相似文献   

9.
In this study, we develop a laser annealing system for In2O3Sn (ITO) to carry out heat treatment on oxides with high melting temperature on substrates with low melting temperature. It is known that the working temperature of traditional heat treatments is usually limited by the melting point of the substrate materials. To overcome this problem, we apply a laser annealing technique to modify the film properties, and to measure the electrical and surface properties, we use Hall measurement, a four-point probe, and an atomic force microscope in our experiment. We will discuss how the annealing is affected by the laser machining parameters, including the beam profile, intensity distribution, laser spot overlap, and laser operation mode. We will further show through experimental results that the beam profile greatly affects the surface roughness of the ITO films. With the use of a uniform beam profile with proper laser intensity, the surface roughness and the sheet resistance of the ITO films can be reduced from 23 nm to 4.2 nm and from 417 Ω/sq to 400.4 Ω/sq, respectively.  相似文献   

10.
The purpose of this study is to pattern the fluorine-doped tin oxide thin film deposited on the soda-lime glass substrates for touch screen applications by ultraviolet laser. The patterned film structures provide the electrical isolation and prevent the electrical contact from each region for various touch screens. The surface morphology, edge quality, three-dimensional topography, and profile of isolated lines and electrode structures after laser patterning were measured by a confocal laser scanning microscope. Moreover, a four-point probe instrument was used to measure the sheet resistance before and after laser patterning on film surfaces and also to discuss the electrical property at different laser spot overlaps. After laser patterning, a high overlapping area of laser spot was used to pattern the electrode layer on film surfaces that could obtain an excellent machined quality of edge profile. All sheet resistance values of film surfaces near the isolated line edge were larger than the original ones. Moreover, the sheet resistance values increased with increasing laser spot overlapping area.  相似文献   

11.
采用大气等离子喷涂(APS)技术在铝基体表面制备氧化锆(ZrO2-20%Y2O3,质量分数)热障涂层,并用脉冲激光对其进行重熔处理,研究了激光重熔对涂层组织形貌、物相转变和隔热性能的影响。研究结果表明激光的比能量对涂层的成型及性能有重要影响,过高的比能量会使涂层表面粗糙度增加,涂层成型变差。在选用合适的低比能量激光重熔条件下,扫描电镜观察结果表明经激光重熔可消除喷涂态涂层的孔隙和层状结构。对粉末和重熔前后的涂层进行了X射线衍射分析,结果表明喷涂及重熔过程中都没有发生相变;隔热试验结果表明重熔后涂层的隔热温度有所下降。  相似文献   

12.
Two series of polycrystalline zinc oxide (ZnO) layers, from Zn or ZnO targets, were grown on silicon (1 1 1) substrates by pulsed laser deposition (PLD) at ambient oxygen pressure levels, stepwise increased from 1 to 35 Pa. For ablation of targets, a pulsed Nd:YAG laser was used. The structural and morphological properties of the layers were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and secondary ion mass spectrometry (SIMS). The SEM images of ZnO layers in SE mode show a uniform granular structure and modified surface morphology, depending on oxygen pressure. The mean grain size in height and lateral directions decreases with an increase of oxygen pressure from 1 to 5 Pa, while a subsequent rise of oxygen pressure from 5 to 35 Pa will cause an increase in the grain size. The AFM measurement revealed that the surface structures of zinc oxide layers grown from different targets were similar, and the layers formed at an ambient oxygen pressure of 5 Pa exhibited the smallest values of calculated roughness and granularity. SIMS depth profiling analyses confirmed that the ZnO composition was homogenous across the layer, up to the abrupt change of chemical composition at the interface between the ZnO layer and the Si substrate.   相似文献   

13.
Glass is a promising substitute substrate material being evaluated for electronic packaging technology. Improving the electroless copper plated layer adhesion of the glass is one of the most important considerations for development of the technology. An excimer laser (248 nm) was used for structured texturing of glass surfaces (to improve adhesion) by changing mask dimensions, laser operating parameters and overlapping pitch spacing, and therefore producing a range of micro-scale features. Electroless plated copper adhesion strength was assessed using quantitative scratch testing, demonstrating that micro-patterned structures can significantly improve copper/glass adhesion. New ISO 25178 Part 2 areal surface texture parameters were used to characterise the surface roughness of ablated glass surfaces, and correlated to the scratch testing results. Highly correlated parameters were identified that could be used as predictive surface design tools, directly linking surface topography to adhesion performance, without the need for destructive adhesion quantification via scratch testing.  相似文献   

14.
《Applied Surface Science》2005,239(3-4):410-423
Silicone elastomers (Sylgard 184 and 170), based on poly(dimethylsiloxane) (PDMS), were surface treated by a combined exposure to UV and ozone. The effects of the treatments were analyzed as a function of time elapsed after stopping the treatments using different standard surface characterization techniques, such as water contact angle measurements, XPS and atomic force microscopy (AFM). However, the primary focus of this study was to apply the Johnson–Kendall–Roberts (JKR) contact mechanics approach to investigate PDMS samples prior to and following UV/ozone surface treatment. A gradual formation of a hydrophilic, silica-like surface layer with increasing modulus was observed with increasing UV/ozone exposure. A subsequent hydrophobic recovery after UV/ozone exposure was observed, as indicated by increasing contact angles. This supports the hypothesis that the hydrophobic recovery is mainly caused by the gradual coverage of a permanent silica-like structure with free siloxanes and/or reorientation of polar groups. PDMS containing a homogenously dispersed filler (Sylgard 184), exhibited a decreasing surface roughness (by AFM) when the oxidized surface region “collapsed” into a smooth SiOx layer (final surface roughness <2 nm). PDMS containing heterogeneously distributed, aggregated filler particles (Sylgard 170), exhibited an increasing surface roughness with treatment dose, which was attributed to the “collapse” of the oxidized surface region thus exposing the contours of the underlying filler aggregates (final surface roughness ∼140 nm). A dedicated device was designed and built to study the contact mechanics behavior of PDMS prior to, and following surface treatment. The value of the combined elastic modulus obtained for PDMS lens and semi-infinite flat surface system showed an increase in full agreement with the formation of a silica-like layer exhibiting a high elastic modulus (compared with untreated PDMS). The work of adhesion observed in JKR experiments exhibited an increasing trend as a function of treatment done in agreement with contact angle data. JKR experiments showed hydrophobic recovery behavior as anticipated from contact angle measurements. Single pull-off force measurements by JKR and numerical analysis of full-approach JKR curves were in quantitative agreement regarding practical work of adhesion values.  相似文献   

15.
Poly ether ether ketone (PEEK), a synthetic polymer, is expected to be useful as a biomaterial due to its appropriate mechanical, chemical, and biocompatibility properties. However, this polymer is biologically inert, requiring surface modification to improve its adhesion to bone cells for use as a bone substrate. Surface properties, such as roughness and hydrophilicity, are important factors in the adhesion of biomaterials to the surrounding tissue; therefore, in this study, laser treatment was performed for surface modification. The aim of the research described here was to investigate the effect of two laser parameters, fluency and wavelength, on the surface roughness and hydrophilicity to determine the optimum parameters for improving surface adhesion. The surface topography and average roughness (Ra) were investigated by atomic force microscopy (AFM). Surface morphology was also observed with an optical microscope, and the hydrophilicity of the surfaces was investigated with static contact angle tests. The results obtained showed that the samples treated at the wavelength of 532?nm with fluency of 8?J/cm2, compared to fluencies of 4 and 12?J/cm2, showed improved surface properties. However, in terms of radiation wavelength, the wavelength of 1064?nm at these three fluencies showed the most promising results for enhancing the surface properties of PEEK for bone implant applications.  相似文献   

16.
Physical processes involved in laser ablation in liquid (LAL) are studied using a gold target irradiated through transparent water. During and after irradiation, the heated material from the surface of a target produces a plume that expands into liquid‐forming nanoparticles (NPs). The LAL method of NP production is ecologically much cleaner than others. A better understanding of the processes associated with complicated hydrodynamic phenomena leading to LAL is important for controlled manufacturing. We consider laser pulses with different durations τL covering fifth orders of magnitudes ranging from 0.1 ps to 0.5 ns and large absorbed fluences Fabs near optical breakdown of liquid. It is shown that the trajectory of the contact boundary with liquid at the middle and late stages after passing the maximum intensity of the longest pulse is rather similar for very different pulse durations if energies Fabs are comparable. We trace how hot (in a few eV range) dense gold plasma expands, cools down, intersects a saturation curve, and condenses into NPs appearing first inside the water‐gold diffusively mixed intermediate layer where gold vapour has the lowest temperature. Later, the pressure around the gold‐water contact drops down below the critical pressure for water. As a result, the nanoparticles find themselves in gaseous water bubble where density of water gradually decreases to 10?4 ? 10?5  g/cm3 at maximum bubble expansion.  相似文献   

17.
In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene’s surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.  相似文献   

18.
Interference effects can lead to the formation of ripple structures at laser-irradiated poly(ethylene terephthalate) surfaces. Poly(ethylene terephthalate) surface was irradiated with linearly polarized light of a pulsed 157 nm laser. In a certain range of irradiation parameters, the irradiation resulted in the formation of coherent ripples patterns. The dimension of the pattern depends on the angle of the laser beam incidence. The surface morphology of the nano-patterned poly(ethylene terephthalate) was analyzed by atomic force microscopy and focused ion beam-scanning electron microscopy. Oxygen concentration in the modified polymer surface was studied by angular resolved X-ray induced photo-electron spectroscopy. Gold nano-layers were consecutively sputtered onto the laser irradiated poly(ethylene terephthalate) surfaces. The morphology of the sputtered gold nano-layers was investigated with atomic force microscopy too. We found that the morphology of the gold nano-layers changes and depends on the surface pattern of the laser irradiated poly(ethylene terephthalate). Formation of gold “nano-hills” is observed at the ridges of the ripple structures. The amount of oxygen together with the morphology of prepared polymer pattern may be the dominant factors controlling the gold layer growth. The present results are compared with those obtained earlier on PET irradiated with krypton fluoride laser.  相似文献   

19.
Using high-resolution atomic force microscope we observed in ambient atmosphere the slow morphological transitions of the incipient adlayer of gold grown on (0 0 0 1) sapphire substrate by pulsed laser deposition. The equivalent average uniform thickness of the gold deposition was about 0.55 Å, which is about one-fourth of its monolayer. A dynamic simulation revealed that about 10% of the gold was implanted into the substrate up to the depth of about 3.3 nm and the top monolayer of the sapphire surface was almost completely depleted of oxygen atoms due to the preferential sputtering by the plume particles. The gold adlayer transformed into a labile phase which enhanced the surface roughness and had a preferred orientation of a wavy structure during 24 h of the deposition. The auto-correlation function of this wavy structure in labile metastable phase revealed two-fold symmetry and provided a preferential size of about 4 nm (peak to peak) with a mean separation of 8 nm. At the end of about 6 days this phase was found to completely transform into an apparently de-wetted phase of beads with average in-plane diameter of ∼20 nm and height of ∼7 nm having large size distribution. Each bead was seen to have coating of a concentric corona layer, which might be that of the condensed moisture or other gaseous species from atmosphere because subjecting these samples to vacuum removed this layer. These observations shed light on the dynamics of the pulsed laser deposited metastable gold adlayer in the incipient stage of its growth on sapphire and their wetting or de-wetting mechanisms in ambient atmosphere.  相似文献   

20.
贺云龙  李凌 《计算物理》2019,36(2):182-188
采用二维双温度模型结合散射作用所引起颗粒表面光强不均匀分布的结果,对单脉冲激光垂直照射金颗粒的相变传热进行研究,通过将界面能量平衡方程,成核动力学的界面追踪法相耦合来确定固液界面的位置并研究激光参数对烧结过程的影响.结果表明:当激光垂直照射金颗粒时,熔化现象主要发生在颗粒的两极且底部熔化开始时间早,熔化体积也比较小.激光的脉宽越短熔化开始时间越早,熔化体积越大.提高激光的能量密度,颗粒的熔化体积也随之增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号